MR N L N LR AR SRR AR AN TR TN [O] ¥ Bt SRS 88" g2 82 F % i) gVa Jui pld gt gtk gt - AN UTUNCRURN RN RPN AN P P AN BN KN KN WY O U LR

L3

NAVAL POSTGRADUATE SCHOOL

N
N .
0 Monterey , California
8
>
] - ,
Iy 6 FILE ;.
e
. A PAD RQOUTER FOR THE MONTEREY SILICON COMPILER

by
Carlos Francisco Rexach

March 1988

Thesis Advisor:

Approved for public release; distribution unlimited.

(SN

3 ; ') ' ' (0 BN N M T VP T S o W P -
‘:‘!'\‘- ‘\' U 'l‘!"‘gﬁ-lt'l‘ﬁa' : CNT .‘ el '\' ‘r" W “"‘T A ~~"'"" e "'\' 5' O : k'!’ N v\'

L A Al - T BT,

. [e R Bt B B8 Gt AN R bl TWONTNY UwE
Lt "a'?,‘,'v‘)ﬂ‘L-“!‘:.“.‘!'.M.'l"" l““k‘ll‘o‘!'c"t.-‘,ilh""'l.i R PR ER R AR TN R R AN R TON TR Ny ot YK N r "

v
. X
IFICATION OF TRIS PAGE /9 Q..;,;/. o

Y
¥
REPORT DOCUMENTATION PAGE 2
P~~~ TS
1a. REPORT SECURITY CLASSIFICATION 1o RESTRICTIVE MARKINGS ;',
UNCLASSIFIED :
] 2a. SECURITY CLASSIFICATION AUTHORITY 3 CISTRIBUTION ' AVAILABILITY OF REPORT ,;.
= Approved for public release;)
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE :) - . ;
distribution unlimited. '
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S) ! A
" Q:‘-
]
63 NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION N
(If applicable) ¢
*§ Naval Postgraduate School Naval Postgraduate School 4
6¢c. ADDRESS (City, State, and Z/P Code) 7b. ADDRESS (City, State, and ZIP Code) 23
Monterey, California 93943-5000 Monterey, California 93943-5000 :
]
o
8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT NSTRUMENT (DENTIFICATION NUMBER o
ORGANIZATION (If applicable) N
]
:'(
8¢c. ADDRESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS ."
PROGRAM PROJECT TASK WORK UNIT i)
ELEMENT NO NO. NO ACCESSION NO ,;.
'
"
11. TITLE (Include Security Classification} -
)
A PAD ROUTER FOR THE MONTEREY SILICON COMPILER .
e
12. PERSONAL AUTHOR(S) ‘:
rlos F 0%
] 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15 PATRF COUNT f
Master's Thesgig FROM______TO0_______ March 1988 184 i
16. SUPPLEMENTARY NOTATION L
he views expressed in this thesis are those of the author and do not !
«] reflect the official policy or position of the Department of Defense or the !!.S. Covernment. ::‘
4
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ‘;:
; FIELO GROUP SUB'GROUP%‘N’ VLS! Design, MacPitts, Silicon Compiler, CAD Tools, "
; \ Pad Router, Pad Placement, Router -+ ¢_eo - (<) s — i
T “‘\ / -~) f
19. ABSTRACT (Continue on reverse «f necessary and idémtify by block number) .\:
A two layer pad router is developed for the Monterey Silicon Compiler. Features include ::‘,
an improved pad placement routine that extracts information from the internal layout to "::
minimize chip area and wiring lengths, and a track allocation algorithm that minimizes the N
use of polysilicon during net layout. The router's performance was compared Yto-that of the '
MacPitt's Silicon Compiler with four distinct circuits. The Monterey pad router lay .
! were 5% to 25% faster, and 10% to 15% smaller than those produced by MacPitts. 167,“\ &
Nt
|
'l
c':
.Q
20. DISTRIBUTION / AVAILABILITY OF A8STRACT 21 Aasrmi gssc PlTE CLASSIFICATION '}t
S uncLassiFieounuMITED O SAME AS RPT] oTIc USERS '
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code)]| 22¢ OFFICE SYMBOL ,)
| D.E. Kirk (k08) 277-9536 £24! o
o0 rCRM 1473, 3a maR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE .:’
All other editions are obsolete o U.S. Government Printing Office: 1906—606-243 .':

R T RN R AR AR N AR P AR N PR N S NP A WA W I WU WU O FLFU P U AR YU T IR T T U S mong

Approved for public releAse; distribution is unlimited o
t‘:f
e
A Pad Router for the ::':
Monterey Silicon Compiler
e
W
by o
\'|
i
Carlos Francisco Rexach)
Lieutenant, United States Navy ‘::j
B. S., University of Puerto Rico, 1980 ,“:
o
Submitted in partial fulfillment of the .
requirements for the degree of (o
o
O'i
o
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING ":
(N
from the
. ' “\.“
NAVAL POSTGRADUATE SCHOOL o
March 1988 'E
: - ’!:t
Author: 6{ g 0\/ - ::Q
Carlos Francisco'Rexach : o
)
Approved by: / L [‘-— . 0

erk o
%

‘0
H Looxms, Ir. r., Secon eader ‘.:}
4y

X‘S&_\ DS me— 5
J. mrs, Chairman, Department of ‘:;.:
OQ

Electrical and Computer Engineering

/’ .
(, /CQ Céc—/ :0'.:

Gordon E. Schacher,
Dean of Science and Engineering W

2 - oy : [N
g, '-‘l'-’l';‘l e, l‘b_,l‘n."o..': L“I. LT T, .‘ (KM% 'h i l"'c.'.u o h L) h

[Y I N L N LN R AT PR 7R P TSR T AT T O WS TS\ + 8,9 ‘Y8 u. R t.e .8 Wb Nl v VoAb tal Sat cak Al A a¥ Rt Tl ey s

ABSTRACT

A two layer pad router is developed for the Monterey Silicon Compiler. Fea-

. tures include an improved pad placement routine that extracts information from
tl. internal layout to minimize chip area and wiring lengths, and a track allocation

algorithm that minimizes the use of polysilicon during net layout. The router’s per-

formance was compared to that of the MacPitts silicon compiler with four distinct

circuits. The Monterey pad router layouts were 5% to 25% faster, and 10% to 15%

smaller than those produced by MacPitts.

Aocolg!on Por
NPIS GRALI *

DTIC TAB
. Unannounced
Justification__ _ :

B

By
| Distribution/ |

Availability Codeh
Avall anajor |
Dist Special i

; - - - . A AV A A
RSSO OGONON AR ONEON UM CHIO O M OO M M I P W My W M K i R K M L 'o. S e et

o
3
b
&
TABLE OF CONTENTS 0
. ,
L INTRODUCTION ..ot 1 .:3'
A. BACKGROUNDooiiiiiiiiiaiiiiiiiiiaiiiiinen, 1 .o
B. SCOPE OF THESIS INVESTIGATIONccooviuinannnn.... 2 3
C. THESIS ORGANIZATION ..o 2
II. ROUTING TECHNIQUES .. .ovvvooeeeeoee e 1 i:,
A. GENERAL ROUTING PROBLEMcoovvveaininannnn... 4 3
B. ROUTERS STUDIEDovuinieinseaneiieeieee e 9 ?3
1. Lee Router 9 :'g
2. Global Router ...ttt 15

3. Channel Router DU ST SRS TN 23 :E’
4. River Routerooviuin... DT 29 u
5. Moat Router P e 32
C. SUMMARYcccovenn.. SURTT TSRO 34 o
IIL ROUTING IN MACPITTSoouieinaneneiiananin, S 35 $\
A. ROUTING IN DATA-PATHoovvnieeeeeeeeeeeeeeiei 35 i
B. ROUTING BETWEEN DATA-PATH AND CONTROLLER ... 36 %‘;
C. ROUTING TO PADS ..ot 13 P
1. Pad Placement, 44 ¢
2. Net Extractionot 16 §
3. Net Layout i 49 ":

D. SUMMARY ...oieeeee e 54 ¥
V. ROUTING IN THE MONTEREY SILICON COMPILER 55 o
A DATA-PATH ..o 57 _:

B. PAD ROUTINGoooimimieitii e 58 .
P
iv :%E
%
.",,i;
&

)

. ' A%
AT) : 04 ' O h 0 0 DUOW BOKN
‘:'\‘u“ -"‘-.’M‘N“‘ ‘-Q"n e, KARTUVOPIRR l“.i-"l."h.‘.'-‘. ‘ 'o‘!h‘..o".h ,"‘!‘0"'."'\‘?‘!.‘." .'a.!'n..,'b."'-', U Ve MOl 0 N Nl M R MO ¥ & .‘c"‘ AL 0N -'.'1‘?‘. (U

g ata” A1 aNe" (08 afs adn ale 2ty aiatakE g¥a 408 PR T TN P T UG WU RUNC FL VUL WL WU N WU UMW W Y

W
"
'?
ot
|
1. Pad Placementcnniintiite e 60 ‘
i
2. Pad Layoutoooiiiiiiiiiiii 69 \,
3. Net Extractionounvuni s e e e e e 73 »
[}
4. Net Layout i 73 N
L)
C.SUMMARY oo 32 ;‘L
¢
V. RESULTS oo e 33 :s'
A. MONTEREY SILICON COMPILER ENVIRONMENT $3 3
)
B. RESULTS - .o $3 “
¢
L. AT A ottt e e 93 :‘,’.
]
2. Wire Length ..o 93 e
)
3- Via.S .. 08 .'.
'l
Y.
VL CONCLUSIONS ..o oo e, 99 ¢
]
A, SUMMARY .« e 99 «
B. RECOMMENDATIONSceivuniiiiianiiiaiiieaaeenan 100)
APPENDIX A: MACPITTS' FUNCTIONS .. \ovoovononaen 101 ‘~
A
APPENDIX B: MONTEREY FUNCTIONS ...ovoorieeeini 133 '.2(5
APPENDIX C: SOURCE CODE FOR TEST CIRCUITS 165 N
A-MEMORYoomniie e 165 -
)
..I
B. TEST oo 165 3
..I
C. MULTIPA oo 166166 :
Do TAXTD oo 167 ' ‘
N (]
LIST OF REFERENCES :................cccooiiiiiiiiiiiii) 168 H
)
BIBLIOGRAPHYovoee e 171 W
)
INITIAL DISTRIBUTION LIST .. ovooneoneoe oo 172
b
)
N
1.‘}
o
N

e MO R , P T L R R e L L G R R A R T AR R
!.‘?h.!h'h'.l,‘\l.‘_ln“,.h.?h ..Qg. & ,"l‘."‘.. ..l.u!h- &0 o PO e b o NN NP W hE, LR W T T R LS

............

W,
l'|
()
0
4
::“
LIST OF FIGURES p
. '
1. Mead-Conway width and spacingrules 8 :;,
)
2. Lee rouier exawnple initial circuit configuration 12 .':’,
i
3. Cell configuration after Lee algorithm with a minimal- crossing 3
parameter is applied 14 'v
ot
4. Cell Configuration after Lee algorithm with a minimum- wire-length v
parameter isapplied 15 .
XV
3. Partitioning a chip into global wiringcells 17 .:'
v
<
6. Grid with original boundary costsc.coiiiiiiiiii 18 &
7. Cell values after step &ooviitii i 19 ’7
]
8. Cell values after step 6t 20 ! :n
"f
9. Cell values at end of forward propagation 21 B
10. The backtracerouteot 22
o
11. The left-edge channel routercoiiiiiiiii.l. .24 |
¢
e 1
12. A channel with vertical constraints 25 ’
K]
LT
13. Making the vertical constraint graph for the channel of Figure 8 27 ::
W,
.
14. Vertical constraint loop i 28 ‘:
)
15. Channel routed by the greedy algorithm 29 N
- 4
» {
16. A channel unroutable by the greedy algorithm 30 7
{‘ d
17. The river routing problem it 31)
)
18. Concentric tracks and radial column geometry of moat o
TOULINE TEZIOM L.\ttt e e e e 33 b
+ ':
19. Moat routing direction ambiguity, 33 L
. '\-
vi]
)
W
)
=

i p s A N TR & - W ™ L -*Iq LAY '."J" » . N .(.-f-
’:"«.ﬁ{'n."n nl.:.l.» l’:‘l'{ .l‘!'t.p l.:h‘l AN, ‘L.‘i. .Av ». n,l'.'l'._l‘q‘ 'a 0% ‘,,, ,“ > " N, ¥ . '_ '. Py W0, .

RN L, Ly Py

PR T W LN LR U LR O LAY A e U GV VR R <l vad g Sal Sl el R TR T VAR ™ Y i

20. MacPitts data-path design 36
21. Typical MacPitts controller designl 38
22, WING layout ..ot 40
23. Solution to river routing probleml 11
24. Routing padsin MacPitts i 45
25. MacPitts floor plano 31
26. Routing moat cornersin MacPittso 33.
27. Typical MacPitts circuit design i 56
28. Opening data-path on the left and right sides 59
29. MacPitts’ pad ring ..o 61
30. MacPitts’ power and ground frameo, 63
31. Circuit with padsonfoursidesciiii ... 65
32. A circuit with padsontwosides, 68
33. Pins-layout ... e 70
34. Contents of layout-pad20b-input-padl 72
35. Pad routingarea 76
36. Sample routing problem 78
37. Routing the corners 0 i 81
38. MEMORY design by MacPittsci i 86
39. MEMORY design by Montereyooiiiiiiiiiiiiiian... _.87
40. TEST design by MacPittsco i 88
41. TEST design by Monterey i, 89
42. MULTIP4 design by Macpittsco.iniiiiiiiinii i, 90
43. MULTIP4 design by Montereycoviiiiiiiiiiiiiiaienn.. 90

. N P
LA I'-.l.n (S ..»ll.t‘l..."lql'L €.

vii

N

P AR
&

A Sv N n

g Wy r et %) -~y -
8. R R X SN N u'lc AT AN A

......

sl &

- w,

-

l{:-‘

SN

-y~

. e En AP bR - v
O R R T L MU L U T N U N M UYL WY UL RN WY S a¥g N AL L W, WL WL WA

44.

45.

46.

47.

48.

a 1 : o N W - . o, oy T AT
R S e e N S

TAXI design by MacPittsoo i 91
TAXI design by Montereycoiiiiiiiiiiiiniiinniinan.. 92
Sample MOS circuitonoiii i 94

Bounds for the step response of circuit in Figure 44 for various

lengths of polysilicon interconnect: (a) L=0,(b) L =100 95
Bounds for the step response of circuit in Figure 44 for various lengths
of polysilicon interconnect: (a) L =1mm,(b) L=1ecm 96

viil

"t ALY A - ~ oy

L

¥ 5

IR TR CAVREE RS AR P X RE RERR DANIU WUV W P T U NENEN RN TR TR A AR TR O WU MUY UN RO O U3 P J ‘."(

]
1,
LIST OF TABLES N
}
!
1. Statistics for MacPitts and Monterey chip designs 85 %

'I

2. Guidelines for ignoring RC wire delays

." oW I 3
ey X

> 4

>

-
!

R o o

X St

< Er Nt - - » Ay mampTg LT AR T AT TR T Y A TN T T Ve W
. -. 5 . ' l... 'ﬂ,.'- o '20-0.'.0 ‘,o .O“,l !.n. ') .-l“,o_q g, ,A .l.l.l N I‘l o! .. ~ [.l "' .

IR v oten ad. caan (ERARAR PR R R RN AN AT I OUTARN A R R KITRURILRTY e I ORI

[. INTRODUCTION

A. BACKGROUND

\Weste and Eshragian [Ref. 1] describe silicon compilers as "an automatic trans-

lation tool that converts a behavioral description into a mask level descriprion.”
Silicon compilers provide a powerful tool that allows the designer to explore perfor-
mance tradeoffs associated with changes to VLSI designs. This is a capability rhat
less automated design environments do ncu allow.

The Monterey silicon compiler (MSC) evolved from an ongoing effort to con-
vert the NMOS based MacPitts silicon compiler into a Scalable Complementary
Metal Oxide Silicon (SCMOS) silicon compiler. MacPitts was developed by Siskind.
Southard and Crouch [Ref. 2] at the Massachusetts Institute of Technology Lincoln
Laboratories in 1981 - 1982. Like its predecessor, the MSC is a fixed floor plan sil-
icon compiler suited to handle concurrent parallel data-path architectures common
in many signal processing applications.

MacPitts has been studied at the Naval Postgraduate School since 1984. Early
thesis work dealt with its installation and documentation. Very little documentation
existed on MacPitts at that time. MacPitts was installed on the VAX-11/780 hy
D. Carlson in 1984 [Ref. 3]. In 1985 A. Froede [Ref. 4] discussed MacPirrs’
infernal structure. and R. Larrabee [Ref 3]. demonstrated the relationship between
rhe source program and the final chip layout. In 1986, M. A. Malagon-Fajar [Ref. 6,
completed a valuable study on the relationship between the compiler and its layour
language. L3. In the same year, E. Weist [Ref. 7] developed a flowchart based inpur
interface for MacPitts. In 1987. A. Mullarky [Ref. 8] designed the first SCNOS

cells. and E. Malagon [Ref. 9] described the structure of the data-path and inserted

N N) N Y, ' ; "%) A T X \ a] 3
IO NIRRT KON, S DA M S BN DD e Tt e s TN M

L™
.

et

)y

XA

YT RN AR R AR P R AT A NA Y WUV WV e u e P A T FUVNEREANANSY IUY KRR N T UL U LU Y UN S TRy - 9 a9 ol 5 Baw

the first SCMOS organelles. That same year, J. Baumstarck [Ref. 10| designed and

\J
inserted additional SCMOS organelles. h
: 3
B. SCOPE OF THESIS INVESTIGATION “
: MacPitts' pad placement and pad routing algorithms are tremendously ineth- E
’Z cient in both area and speed performance. The order in which pads appear on the ':
' chip is specified by the user in the source file. MacPitts distributes the pads ax i
, '
3 evenly as possible along the top. right and bottom sides. No effort to optimize iny -
:. of a number of possible parameters is attempted. "
" A second significant problem with MacPitts’ designs 1s the requirement for all
': nets connecting to pads to enter the circuit through the left side. The extremelyv '
?a long routing paths that result, impact adversely on the chip’s speed. :
: This investigation has two goals. First, to continue the study on the structure :
s% and methods of MacPitts, and, second, to develop, implement and test algorithins \
§ that will do a better job of routing pads than in MacPitts. This thesis introduces and .
’
! documents a set of LISP functions that result in more efficient pad placement and '
':' routing. This is accomplished by first opening up the internal circuit to the outside .
3 on both the left and right sides. Second. area and wire length optimization criteria :
. are introduced into the pad-placement routines. Finally, net layout algorithms were '
:': modified to minimize the use of inferior routing layers. such as polysilicon. :
‘
4 g
" C. THESIS ORGANIZATION
. Chapter II discusses various routing methods. The routers discussed were se- R
3
‘:: lected from the many available because of their applicability to specific routing issues :
;3. within MacPitts, or because of their fundamental value. Chapter III describes rhe '
“ pad and river router and pad placement used by MacPitts. and Chapter IV describes) |
» a new pad placement and pad router. Chapter V gives the comparative analysis a
D.s
! \

[SV]

1,

D

X ;

4

l.'

X

. s y -

Y ; s - » oy R R O N G Rt RO Rt B RS N A
N Y M AT AT AL T TN ARV NI DN SN T n b T B 0 B, Do S e e N

-h
=y

results between the new and old pad placement and pad routing techniques. Cou-

-
-
-

clusions drawn from the results of Chapter V, and suggestions for future resenrch

E 3

are offered in Chapter VI. Appendix A cortains the LISP code of the function~ in: "

MacPitts involved with pad routing and placement. Appendix B contains the LISP A

functions that implement the new pad placement and routing process. Appendix C 0!

includes the source files of all the circuits tested.)

LRI

SR A AR ad
- - e i

"‘" iy

."."t:.

e

Pl ol s g

o>

"rg

AN AT A A DR o T DN A TN D N AT M i i WK A SR CK G KO e SR D Lt B Do D DSt o DO i

R R R T R AR AR RO R O R A AT K A R TN RN R DO WU OMOCTOLR KN L% TR Mt bl l Bl b

~
~
N 4
'
v
W
\
\d
II. ROUTING TECHNIQUES]
: : SN
Much work has been done on the LSI and VLSI interconnection problem. The :
J
. . . . 0
realization that all-purpose, optimal routers are an impractical approach to the ‘:;
R0
interconnection problem has led to a search for different approaches. The solution =
\/
has been to develop routers specialized to interconnect specific geometries. These ‘:‘f
routers produce near optimal solutions with reasonable resource requirements by .‘:'
"
exploiting circuit characteristics. This chapter discusses tlie nature of the VLSI and)
o
LSI interconnection problem and surveys current routing techniques. :'.,
&
¥
A. GENERAL ROUTING PROBLEM "
The input for an instance of an IC layout problem consists of a set of cells and a
set of signal-net definitions. A cell can be thought of as a rectangular box with pins ' ;
!
on its boundary. Pins specify the location on the cell perimeter where electrical ':f
: :)
connections are made, and a signal-net identifies a set of pins to be interconnected. 'ts
As a general rule, routing paths are not allowed to cross over cells. Because of its o
~
complexity, the custom IC layout problem is divided into a placement phase and a ‘:1
routing phase. In the placement phase the objective is to find a cell arrangement .?
Q%
o e s
that leads to an “optimum” circuit layout. It must minimize layout area, yet allow)
M
sufficient space between cells for efficient routing. Several interesting techniques o
. '
have been developed. With names like synthetic annealing and genetic evolution. T
: . . . N
these techniques emulate natural processes and avoid entrapment in local minima .".
b,
by introducing a degree of randomness into the optimization procedure. This study "
assumes that an acceptable cell placement has already occurred. X
&
Once cell locations are established the routing process begins. The routing ;:‘
: : : . 4
problem is defined by a set of cells and a set of signal nets. A solution to the routing - W
]
d
!
4]
\
X
b
W
o
. . . -
S O T T I TN R X R KO NN MO MONCONMOOAN IR LR HORMOIOM NUAR SR A UK A RO Y AT

. - - . - cata® . - P
3.0 gt (SR WA U Y ! ¥ SE,4" ' d gt " (VR 1) $.) Sag Sah tat cad da8 “ab i ¢ » A W LN\ U Y A U * ¥ \

problem is obtained once all pihs speéiﬁed by the signal-nets are interconnected.
The interconnection process must be completed within the context of technology
dependent design rules.

The previous statement of the routing problem disguises its complexity. Find-

ing an optimal solution to routing even modest-sized circuits is an extremely diffi-

cult task. In fact, routing problems belong to a large class of NP-complete (non-
deterministic polynomial time complete) problems.! No method for an exact solu-
tion with a computing effort bounded by a power of N, where N is the number of
interconnections, is known.

Many factors contribute to the difficulty in finding optimal routing solutions.
The most significant are related to the physical and electrical properties of the
materials used in the circuit and to limitations in the fabrication process. The effect
these issues have in the design process is often included in the design environment
adopted by the designer. This environment is embodied by a small set of design
rules.

The properties of the various layers used in IC manufacture and their interaction
determine which layers are suitable for routing and how they are to be used. An
ideal routing layer has negligible propagation delays and is electrically insulated
from all other layers. Of course, no single layer measures up to this ideal. However,

as the following description shows, some layers come closer to achieving this ideal

than others.

An n-channel metal-oxide-semiconductor (nMOS) fabrication technology uses =
metal, polysilicon and diffusion layers. Because the metal layer is insulated from

all others, it can cross either diffusion or polysilicon with no significant functional R

!NP-complete problems do not yield optimal solutions to any efficient algorithm. The name refers %:"-
to the empirical observation that no solution bounded in time by a polynomial in S, where § is the I|:|
number of steps required to solve one instance of the problem, has been found. ol

3

\ ; ' . b Ty g AN RO 0 TN WO X O
:@f"p’i‘.gh‘ﬂhig'_-"‘g‘ “‘.«‘_“l:“dt‘.l?‘;\t‘.l!‘.lt“i, l':'l"“l.a ch'n".‘t'.'u‘. ';‘.‘., et i, I‘l.j.. et l'u‘l. .I.n .‘., -J", s, % w NN g N S Fe A1 A0 .l.'!

. B . . . ‘g u- « 3 ¥
R SR ARR A AR RN AR R AR R LY 4°2.8%. 8" WU A%"4Y W1/ N Lot ataates e NN ahlay . bk v ,

effect. In fact, to connect metal to other layeré requires a poly-metal or a diffusion- :
metal cut. Cuts are little more than holes through the insulating layer that permit ':‘:t
electrical connections between dissimilar layers. Unlike metal, whenever polysilicon Xy
completely crosses diffusion, an nMOS field effect transistor is created. - ::‘
Various fabrication and operation mechanisms contribute to alter the final prod- ;}E

uct from that conceived by the designer. These include: mask misalignment, vari- T8
ations in the photoresist edges due to variations in exposure, undercutting of the ':::
oxide beneath photoresist corners, overetching, spreading of diffusion and implan- :::

tation under gates or near the source drain end, and tolerance of the field-oxide !

windows. Finally, a feature’s size can change during operation due to metal migra- 3‘:
tion. :::,:‘
Rather than struggle with a long list of complex process and fabrication depen- 3
dent parameters the designer works in an environment consisting of a few conserva- A ?
tive design rules. Design rules can be thought of as allowable mask layer geometries é
that permit design variations while guaranteeing correct circuit behavior. The pur- TN
pose of design rules is to guarantee that, under the cumulative contributions of those . ::':
factors mentioned in the preceding paragraph, the circuit operates correctly. There :':i
are many different design rule sets in use today. It is up to the user to select those 0
rules that best meet the requirements established by the technology, fabrication i:
process and intended market. '.Ei
In 1979 Mead and Conway [Ref. 11] formulated a set of design rules for the N
nMOS process that have become a standard in academia. They rely on the length ‘
parameter A to determine a minimum feature size. The quantity A corresponds E
to the maximum deviation of a mask on the wafer from its intended position. As o
a result, the maximum deviation of two features on different masks on a wafer is - '
2). If the crossing of these two features is catastrophic for the design, they must E\

be separated by at least 2\ in the design drawing. If not, it is assumed that the

* BABONYOO000 OOOCOOBOG0N000
l':t‘"." s!l".!'- AAGAGAIG AR, a.i'u,_l'l,~ RO

.)
I P P T U ISR T WIS TP NI WOURRISY LT W NG WL O TN SR T I AR TS 12 a8 " a1 a7 atato0a® Ba¥ 0ac At Aa® 0o’ B "
PESLII gt

"
3
maximum movement of an edge is 0.5 and the edges must be separated by at '
least 1A. These two rules form the basis for most of the Mead-Conway design :E
rules. Stricter exceptions are needed to contend with metal width and spacing, ;;
i and diffusion spacing. Mead-Conway design rules specify the minimum conducting .
path width and the minimum distance between any layer combination. Simplified 3:
Mead-Conway rules are depicted in Figure 1. ‘.!:
The decision to use Mead-Conway rules was based on three factors: they are &,
relatively simple to use; they are widely accepted by the academic community; and .:{.
they are the design rules which the MAGIC [Ref. 12] graphics editor design rule ‘;
checker uses. It should be noted that circuit performance degradation, as well as :
an increase in chip area could make the A rules unsuitable for commercial use. The ':‘E
original MacPitts designs did not adhere to Mead-Conway design rules. Lt. J. :::
Harmon edited the organelles.] and the control.l files at the Naval Postgraduate :v“
School to remove all non-conforming structures. ‘:"
The routing problem is further complicated by a wide choice of optimization ::
parameters. M. F. Kelly [Ref. 13] conducted a study on comparative router per- ,
) formance. In the study he lists 22 problem specifications (routable area, number ::
of net-lists, etc.) and 22 performance description characteristics (total wire length, ::
routing area, etc.). Since there exists no practical algorithmic router, there is no :E!
routing technique available that will route every circuit optimally. A router that "{
performs well for a specific circuit geometry and a given set of parameters may :.:
yield unfavorable results if either the circuit architecture or optimization param- :
eters change. Various parameters can be used to evaluate router performance. :1
Candidates include: »
{]
i 1. Degree of automation ::
"
2. Total wire length ."“

'
J
7 o

. . i
A s , - a: s ~ . - . o~ ‘ o
WS TE NN S0 AR Q)!l"n,l‘u,!.ﬁ.l". K R TV 0 M .. ARl et . . k!\‘i"n Wy OO NI MM N Xt

R Ly va - ‘e @'a B &Y e 8'a 8 AL
T T R R L AR R O R DO O DR O A N Y DU VY UYL Vo g% BV PVp §'a %9 % #0 $70.0°0.0 9. 8 0 4100 5 0 0.8 gt 0t

Minimum Width Rules: , Y
v S

- ¢ v >
T Metal 77 A ~ 22 9 Difiision b ~ 2 *
$ - Ko e

Minimum Spacing Rules: _
. \J
E Metdl 7 9 Polysilicon__ 7 ¥ 9 Diffusion 9 & K}

n ” _2 b} W
7 T L Q Diffusion 9 # .

? Mezal

ﬁPolysilicon 77 +) 2
=1x . v
i Diffusion 7) by

Contact Cut Rules: . . I
2\ 3k N o

=1 I I Conducung | _ 1A)

-
T

T

>1

Cut 22 Cut *

»l

Maienal

Figure 1: Mead-Conway width and spacing rules h

¥

’ - ‘) . e - WV
O N T T O S O e M O e MR X i e I o L ety '-un AR A

W (]
-ly".; L J-"h"h .8

R T R R A R R R R AP U U R T RO o I RO I I /R A R T VL T S WU M S R N WL W LWL WL Ve W O O R O RO ROCRY

(%
N
—. N ‘
3. Total resistance and capacitance W
h
n
4. Number of cuts ;
"
5. Total routing area ::.,
iy
. . . U
6. Wire density or congestion "
Ls
; .
7. Number of bends "
a::f
8. Computer resources required ':f
N
B. ROUTERS STUDIED o
Many routers have been developed to solve circuit interconnection problems. Q:‘
[
L2
By one set of criteria they are divided into two categories: algorithmic or heuristic. ".a'
\)
The algorithmic suite is represented by Lee’s [Ref. 14] ezpanding wave router and T
o
\
its variants. Lee’s router is algorithmic in that it guarantees to find a path for a .::
O
]
given net provided a path exists. All other routers are based on some heuristic. ,:::
A different set of criteria partitions the router suite into either detailed or global %
Od
. . . N
routers. Global routers identify those routing areas that a net must traverse to ",:
1
(O
make contact with all its terminals. Detailed or exact embedding routers complete ‘:::
the routing job by actually laying out the conducting paths. vy
. A
A problem encountered in selecting those routers to be included in this study W
d
when comparing routing strategies is the large numbers of routers currently avail- Yy
able. Since it is virtually impossible to investigate all available routers, a selection w
W
was made based on their fundamental value or their applicability to routing issues :.'*
Al
. . . . Iy
in MacPitts. The routers to be discussed are the Lee router, global router, channel A
routers, river router and the moat router. i
HY,
()
1. L outer [Ref. :',:'
oY
Lee’s router resulted from an endeavor to “... find procedures that will enable :0;.
a computer to solve efficiently path connection problems inherent in logical drawing, :",_
(V¥
e
9 'f.a
e
l:.,
)
v

. . 4 n -y R o 0
e N S e é’y_i.p,",7,“1!’0}’_!.") "'.,‘JJ 3“.'b‘-‘1‘.'1‘.’!‘-"‘-’.‘#"‘Ahk SN 0'.‘»" N .'t'n'i A .n' 5 A

~ s aY VAR T AN AT A AT T AT TR T A AN R g
\"" m.l. -" al,o. e * \ LA

* N B D gar wat . €xt et 202" At €t B2t 02008 0u’ Sa* a2t Vot 0t 50t " Nt e ? & fad g] 7 O TENTY
SR TR R Y P U NG U TRIPU WU FUNU FUNURNU NU N UNY ; N RURNU P WU UL TU WL WY ¥ o) * ¥ gt Ha® Had ¥ Ty

""" '
Y
2
4 . !
wiring diagramming and optimal route finding.” It is flexible enough to permit A
(]
the user to choose among one or more optimization parameters: wiring length, .:
'|
congestion, layer crossover, etc. All versions route one net at a time, starting 2
out with a pin of the net and progressively assigning distance values to the cells - ;
]
surrounding it, as in an expanding wave. This continues until the destination pin is A
.)
reached. The optimum path is marked by backtracking towards the source pin by it
way of those cells with the minimum distance values. Variations between versions .:;
of Lee’s algorithm are primarily the result of different attempts to speed up the ::
Y
routing process. »
)
All Lee routers suffer from three significant flaws. First, since each net is ."‘
o
routed independently, early routing decisions can significantly degrade or completely ;"
(A
block the routing of subsequent nets. Second, Lee routers require vast amounts of o
)
storage since each cell must be able to store both a distance value and informa- ::‘
X
tion about a backtrack direction. Finally, Lee routers are slow since the wavefront ':
1 "
expands in all directions irrespective of the target’s direction. Generally, the algo- -9
{
! rithm has a time complexity in the order of O(n?), where n is the minimum distance N
" - ot
between source and target. o
4
Lee translates the layout problem into a C-space defined by the quintuple ¢
(C,$,N,I,M). In the model: 4
1.
A\l
1. C is the set of cells, C = c!,¢c?,...,c" defined by a grid superimposed on the ::
routable area. ¢
2. N is the 1-neighborhood function, N(¢') = ¢, c}, ..., c,. N(c') defines a subset ’
of C whose elements are physically adjacent to c'. X
3. S is a finite set of symbols called the alphabet of C. o
4. F'isamapof CtoC x S. Foreveryc € C,T(c!) =(c',s?), s € S. In other -3
words, for every cell ¢! € C there is mapped to it a symbol s’ € S. s
. \J
5. Let ¢' and c-’ be two distinct cells in C. By a path p(c', ¢’) is meant the chain :::
of all cells ¢® = ¢, ¢!, c%,...,c™ = ¢ such that ¢! € N(¢') for (i =0,1,...,m). 5
By (¢, ¢’) is meant the set of all paths p(c', c/) between cells ¢ and ¢’. S«
{
)
10 .
(]
3
j

N : - .] axe
e . P - ApT A A) AN .
O SO T e i D D T D DO MO AR AL I TR e U UM S R K oSS AR A DAL RIS R T o A s A

L T N R R R R R N o Ua HY U UR TR RS L W P PR R PSR TR AR N RS - M-

X
.
i\
. |
6. M is the admission map with domain w(c',c’) and range 0,1. Any path '
p(c',) is said to be admissible if M(p(c*,¢’)) = 1. Otherwise the path is said \
to be inadmissible. The set of all admissible paths is denoted by 7*(¢*, ¢?). at,
)
Given a set of admissible paths, Lee’s algorithm finds the minimal path with 3
" o »
respect to a vector of r functions F = (fy, fz,..., f-). A path p'(c’,¢’) is said to be ::
o
- minimal with respect to f; if "
AP () < Alp(c,))
i
o o : e
for all p(c,¢’) € 7*(c', ¢’). A path is minimal with respect to (fy, f2) if p'3(c',¢?) € '
o o o '
Pl(c', ¢?), where P}(c', ¢?) is the set of all paths in 7*(c*, ¢’) that are minimal with W
X 4
respect to fi. In other words, p'? is minimal with respect to (f1, f2) if along all paths “:
i"
minimal in f;, it is also minimal in f,. In a similar fashion, a path p'®3-"(c,¢’) can p
)
be found that is minimal with respect to (fi, fa,.... fr). The vector F represents the
parameter or parameters which are to be minimized. Priority between parameters ':.:
is determined by position in F. The first parameter to be evaluated has the highest ¢
|
priority, the second is next, and so forth. This convenient ordering results because
}
. . 'V
the minimal subset of 7*(c*, ¢’) is first selected with respect to f;. All admissible ¢
Y
paths resulting from this selection become the domain from which minimal paths o
)
for subsequent parameters are selected. This sequence of dependency is repeated ;
¢
for each function. :fa
. t
Given two cells (¢',c?) € C, Lee’s algorithm will find those admissible paths i
which are minimal with respect to F. The algorithm simply starts at one end, say v
. , . s
¢' and marks all N(¢') with a symbol of S. It then looks at all N(N(c')) and marks ::"
. o,
all that are admissible (not a member of N(¢')). It continues this procedure until ,:
it reaches the target cell or until all cells in C are marked. In this case, no path 3
v ‘
exists. Finally, from all the possible solutions the optimal one is selected. \
\
The following example illustrates how Lee’s algorithm works. In this example Y
'
the goal is to find the path between terminals of a net that minimize the number \
b
11 &
N
)
D,
;

' G200 I ‘ NGRS R A AN N L s B S S At
‘x"“.',".M‘,.;'.‘,.’a‘_.i.‘,lq'.h‘,h"..*#.";'.h'.h‘.'\‘,.’s DU ORI PR AN \ OUI NN - & I"l » N LR S pRA Lo Kom > s .

N . - g GR ava el abh TR TOR N .
PR T R N W TR A O LRI T RO AT VWK RN AN e AR Y N avaNa aYi 1° g Wy v a e bt fpS fat Bab o ¥

g
| by
by
)
r_—}r"* 2 » * [n C) "(
M x x x x x] x .::
()] [» -) 0 'Q:
x r -] s x o
13.9)
e " [} . 3 3 » .
X L]) | x
0} - - O
0. [0 [- L} " " I'|
x a X L -] x :::
”"l- ¥
M S T 0 0] g . 2
X H '
« [=) e ™ »
[Vt
4 X X 4 4 x r |l
N
Figure 2: Initial circuit configuration .
|'.'»
of other net paths crossed. Lee introduced it as a minimal-crossing problem in :::
i‘o
his original paper. Actually, it is a two function problem because it also prevents ’:
routing on the edges (squares marked with x). In the example, net A has already ?
Ch
been routed through squares 6, 3, 16, 15, 14, 3, 2, 11 and 28 (see Figure 2). :::
‘l
("
The l-neighborhood function N and coordinate functions d,,d;,d3, and d, . o
<
are defined as follows. Given a cell ¢*, d;(c') is the cell directly above ¢*, da(c') is the i';
. : _ -
cell to the right of ¢!, d3(c') is the cell below ¢' and dy(c') is the cell to the left of ¢'. :::
The vector F' is constructed by considering the parameters to be optimized e
and the properties of the fabrication materials. For example, in a two routing layer -.,
: "
technology such as nMOS, the routing process can be simplified by assigning one :;:
routing layer to horizontal wires and the other to vertical layers. If a wire has o
to change direction a via is used to connect the two dissimilar layers. For such a -?
‘P
minimal crossing problem the vector F consists of one function f which is described .
\]
‘ as follows: "
1. f/n(c*,c%)) = 0. The cell mass of a cell routed to itself is 0. ,;,
)
\:t
N
- |:‘1
| ')
12 o
..u
¢
¢
N

T L T TS R DL T TGRSO T, L A PU IS P
o W ..,n.. 2 I " Y e

h 1 AR T TR 'y -y ®
“' ["’.“"'J’f '.’.‘ [’A’l !’ "'clf.ﬁ fh‘f’l‘.'i.-.l.-.i...l‘..) jA A_A'. » l" o o h ..l'n.. 4~ »

9

2t Kad Tad ¥ad fod g datin K38 urd Bl 4ol g g ted Vol iyl Nl tal Yol tih YuR val $ad Yof Sad -y L Vel Ball Vo Gk € Vol Ul Sch B lal Sak b4 o

LR

A

2. If s(¢') = blank, then

™

mMin (y(pc*.c)i’ eneyy over all o
for which jsxc*.<) has been defined;

; f(p(e™,) =

undefined otherwise

The cell mass of a blank cell equals the minimum among the cell masses of :
its 1-neighbors. ¢

3. If s(¢') = —, then

__(min {#(pew.dy (). S(R(c* (e NID+1
if either one of the values of f is defined;

' f(p(c',c")) =

) undefined otherwise N

i The cell mass of a cell with a vertical wire is the minimum among the cell
masses of its 1-neighbors plus one.

4. If s(¢') =, then

LB e -

R
-3

L UIDIDL (f(e” (M)A (Blemdg (<M D+1
if either one of the values of f is defined:

: flple*,¢)) = '
‘ undefined otherwise
:)
ON
' The cell mass of a cell with a horizontal wire is the minimum among the cell I
' masses of its 1-neighbors plus one.
; 5. If s(¢') = |,],[or], then f(p(c*,c’)) = oo The cell mass of a cell with a via
B is large enough to prevent routing through it. 3
' 3 B 3
5 6. If s(c') = x, then f(p(c",c')) = co The cell mass of edge cells is large enough 0
’ to prevent routing through 1t.
3 ’
' The following terms are used throughout the discussion of the minimal cross- '
R ,
1 ing example: :
, 1. A cell list L consists of names of cells which have been looked at and still have
X admissible 1-neighbors that have not been assigned a chain coordinate. :
. 2. Cell mass is the sum of f as it follows the path from the source cell to the 2
| current cell being examined. A
3. Chain coordinates are assigned to each cell that has been investigated. They ‘
£ - specify both the direction to the previous cell and the cell mass. :'
l :
‘S A solution to the routing of net B in Figure 2 is shown in Figure 3. The :
initial L list starts out with cell 18, the source cell. Admissible 1-neighbors include n,
v
: 13 M
’
v

A
)
i
A

. . . "
| A g r~ ‘
NN O NN MM NN AR MMM RN S WK RS IO MCSIICT N NN TR KR T T RS TR S MWL AL R T R K

17 e 3 . 13 \h
r - | " .
14.0) wli
1] L] L 3 12 ‘T.n
SN
10) (o 1} (o= 1) (.01
] . [H 4' "n BTy
A X [A s
olo N
; (N
20 ’ . [Q 7 | |€'
(1
(.00 | te=.0) | (=,0) [(e 01] (&=, 0}] (e= ¢ _.I'
W
2
0.."
Ig‘
b
Figure 3: Cell configuration after Lee algorithm with a minimal-crossing parameter ‘i'.
is applied st
1
o BN v}
(5, 17, 19]. Notice that cell 39 is not an admissible neighbor of 18 because it sits on g
?
the edge. Based on the definition of f, cell 5 is assigned a cell mass of 1 because . A
- ¢
it already has a vertical wire. Cells 17 and 19 have cell masses of 0 because they '::"3
'
are blank cells. Since their cell masses are minimum, cells 17 and 19 are appended i
into L. Furthermore, chain coordinates (| , 0) and (T . 0) are assigned to 17 and ::‘.'..
!".\'
19, respectively. The 0 in the chain coordinate refers to the cell mass. The arrow "'L‘
s,
points the path back to the source cell. L now consists of cells 17, 18 and 19. X
The process is repeated. Now the admissible 1-neighbors to list L include ::':‘.
o
5 and 20. All other cells are inadmissible because they are either edges (cells 36. ‘n'.:j
'.'
37, 38, 39 and 40), have vias (cell 16) or have terminals (cell 6). The cell masses ""

assigned are 1 and 0 respectively. This time, cell 20 is added to L and is assigned
a coordinate chain of (T, 0). Also. 17 and 19 are removed from L since all of their

possible 1-neighbors are either inadmissible or have alredy been assigned a chain

14

L SR S e T R I BT TN A - ™ g 0 4
L O AN R A T S T PP BT T
AR L o A SO L O N , " . W,

.'.J-..‘.)."‘l.‘tlg"‘-‘,' b‘. ty .‘h'

........

IRRR AR A

4 b - [A L) -
"- Y, I'. ‘A‘A‘.‘l'n‘!':“.- l'-',l'.J.lj'o,l'l.l’l.ﬂg‘l.\'_l“"l‘o,t |9"l."l....l..".|"“‘l (W) i‘o.d’.]'.'b‘.?l‘. 1t nl'q (M) .o o’.'o’l'b |‘| l‘b)

¢ (RIS R ".7 ..J

Figure 4: Cell configuration after Lee algorithm with a minimum-wire-length pa-
rameter is applied

coordinate. Repeating this process leads the pointer to cell 27. L now includes cells
18. 10 and 27. Admissible 1- neighbors are cells 5 and 11 with cell masses of [1. 1].
respectively. L now consists of cells 5 and 11. The algorithm has determined that
it is not possible to route net B without crossings. Chain coordinates of (~, 1) and
(T . 1) are assigned to 5 and 11, respectively. The process continues until the path
with minimum cell mass reaches the target cell as shown in Figure 3. Notice that
this path has one crossing at cell 11.

Figure 4 shows the same problem routed with respect to a minimum-wire-
length parameter. In this instance, different parameters yield different resuits for
the same circuit. It is precisely this flexibility that has made Lee’s algorithm one
of the most popular Printed Circuit Board routers.

2. Global Router

Global routers assign nets to routing regions but leave the actual track layout

to exact embedding routers such as the Lee or channel router. They are effective

in reducing seemingly intractable problems, into a series of less complex ones. This

15

T R LU O VO R R RO RN R KA AU R sNW NN TRUFC L P ORT vUwCe
17 16 18 14 13 30
V) (Jsz
18 S 4 3 12 29
B |
|
() (= 1) (= 2) (@—3)| (@ 4) | \@45)
I 5 1 2 T 8
A X l_ A
(’LI;
7 F] 27
40 |43 | ad |45

S N,

Rat b Bg*

- L " » |‘|
= AN 0‘ ’0, 13 l\. '. ' ». ‘.l‘; 1.0‘0.0‘;,“-

2o~ R et

P

..‘:‘.‘,qu i

-

-
oo

-'A
L
\J

«

AP

. P . e Seh b A A
R T T R R R T RO PO R P OU T RO OU P TR ik ' W e PR A - i e

divide and conquer approach can reduce computation times drastically. Global

.
.
routers must provide certain essential information for the exact embedding router 4
4
to complete the routing process. At a minimum this information must include: ol
1. The set of routing regions traversed by each signal net. .
$
2. The set of edges crossed by a signal-net in each routing region. ‘
(]
3. A set of strands specifying which crossings must be connected within a region. : ::::
A net may have more than one strand within a region. Such cases result in -
tree-like interconnection structures. !
o
~\
Gl
The global router algorithm is similar to the Lee router algorithm. Like ol
4
3
Lee's algorithm, the router is concerned with one path at a time. It begins at the
. R
source and expands outward, evaluating a cost at each routing area. The algorithms ::'.‘
¥
. “ '
differ in that global routers evaluate all routing areas in the circuit (using Lee router 0::
\N
. : . . . h
terminology, every routing region is assigned a cell mass for every net-list). Once cell 0
values are assigned, the optimal path is determined by backtracking from destination N
\J
. ¢
to source as in the Lee router. Before starting a more detailed description of the "::
- ~‘
algorithm, some definitions are in order:
o
1. Routing regions must be defined by the global router or by some prior al- Y
gorithm. A common practice is to extend the horizontal and vertical cell h
boundaries until obstacles (other cell boundaries) are reached. The rectangu- ‘
lar areas that form from the intersections of the various edge extensions are
the routing regions (see Figure 5). 3
Oy
2. Channel capacity refers to the number of crossings that a routing region can ','::«
support. '.‘:'

3. A fence-list consisting of all nets having pins within a routing region is con-

"
structed to ensure that crossing space is available for these ca-=s regardless of £
when that signal-net is routed. !

4. Edge values represent the cost assigned a net-list for traversing any routing 2
region edge. This is a dynamic value. As more nets are allowed to cross a ::‘,
channel, the channel edge values increase. When the channel is saturated, an v
arbitrarily large number representing infinity is given to that region’s edges «
to prohibit any other nets from using that channel. y

- \'t
. . . A
The global router initiates its path search at the signal-net source and expands é
. C . . . : . W
in all directions (vertical and horizontal) until all routing regions have been tested.
16
b

- ar - - ()
TN Wl W

: n X O) N
~,\..'"u"l"’."!l".g" -‘3.u'\’n'!.‘t‘l‘-’l.‘)l&‘l‘m G .. N2e%. a%¢ " X retih W Lt 1“.» 'J.‘.l M) .!".t M3 0 X

LR 4 R N U A NSV UV W UV LY UW UN LY T O N T o o T P O O O O O K O R O R T T
P RENEY EA RN LN T B

L. .

AL A e 4

" HORIZONTAL
CHANNEL s
HORIZONTAL i
TRACK CELL7 CELL 8 .ELL 9 j
“
b ()
| verTicaL ~—
TRACK VERTICAL \
. CHANNEL
W “
¥
o]
p Figure 5: Partitioning a chip into global wiring cells. \
i At each region, a value representing the total routing cost from the source to the :
i
U
i current region, is calculated. A cost value is computed by adding the cost of crossing)
4 J
\
D)

‘I into the new area to the value calculated at the previous area. If this value is less

> -

than the current value for that cell, it becomes the new value. Otherwise, the old !

:: value remains in force. Once all regions are assigned a cost, the optimum path is Y
;: determined by backtracking along the minimum cost routing areas until the source :
4 is reached. As with the Lee router, different optimization parameters can be used ,‘:
:.' to meet specific design goals. \ |
*:. Figures 6 — 10 describe events that lead to the selection of a path for net A. t
; The initial edge values in Figure 6 are the result of nets that have already been \
[routed. Scores at the fifth and sixth step and at the end of the forward propagation _
: are shown in Figure 7 - 9. The number inside each square is the minimum sum of all K
) the edges crossed to get to that square from the source cell. Consider, for example, n

. square (4,2), i.e., the cell in the 4th column and 2nd row. The cost at square (4, 2)
b

at step six is the minimum of the cost of moving to (4,2) from square (3,3), which

RN T U AR T WP W * hat e’ 18" a88°a¥a7 202" 202 0aY . 01" 00" Sa® V) Ba” TN

B
.

-t
-

‘:l'j

F 3
(A."_'

-

a9
+
~

r
L ®
(Jl

Gy
=~
4
-—b
o +*
—-—h
+u
N
N

'L
o

]
R/
4

y O 4

4.

e mad ' T o, —
-
N %
I
(7]
(=]
0-.-—J'—‘4 - % — 1 i, —
W
U

- 4 W
* 4 >
oo
-]

!
—F' w1 y
by

nII,

T

B QG
'J

b
o,
o
N

=]
-~
i,
anh

“q

- B [} 3 ;
2> 4

~

C)
wn o

[
b

- b
[I
% = ':L‘

i
1

&
]

4.
-

Gy

— .
-
o +
=%

Figure 7: Cell values after step 5.

o . i A
AL IO A e A AN S T o o

LI T Ba® UiV s R it . G L * - " ; »
",l:'p ‘g A%, .'a,, '-‘l uh‘ ..u. u!‘ol.. \. 't,ll .C'ul‘m }l‘- a .t\ AR

v oe e £ 6 8. 02 00" Na" 08" 0s” IR oV 2 a%S
I U e T O LA LT LD LT DA U LISU LW o YUYW SPUCLPICE WUU T P YL YU U A T N €0 8. 0 0,

ey O

T

=
N

=1~ 9. —t—t——¢
o
Q9
-—
N

A O
N
A ¥)
(7]
o
©
W
[7,]
&

o3
(¥]
a-ab
o
a

[
onb
o
N
-
o
‘0
N
(4]
A v)
(#]
F'S
o
o4

r
-—
N
&

'J
-—b
(%]
A7)
N
N

J

N
F S

S,

S
Q

4
AN
t,
&
1

A Figure 8: Cell values after step 6.

Wy : . X | - - . - AL N R - o TA
* ! . W n W W f a0 : o, \
:-".'3'.s'.".~,’.'. |‘.’n'..°|'; A‘bi’!‘n‘-‘i’!‘l”t‘. l”l » ‘,. <o U UME S LU e BN A Ve St by BT A N X

!

TN

nl.”

b "

1,0

DRI ARSI AU MG RN

AWRER LN N

SRR TR TE IR LR IR R RTLUL AR SN XN .

N U RO LA U RGO

X))

n

4>

H

) I !] | | |
8 T11 714 519 &£23 726 & 33 + 30
* l - * ' - ‘ e L hy S S, .n_‘
[- j - - I -] -* - ¢ -
4 77 F10 519 T8 422 26 . 28
[R N]
If_ l 2] « r) FJ 4 1 v «
| 3 7 A 66 512921 930 535 432
| ' } | -

Hd-—f—d—t—.}'i s 7 2 o 7—
7 54 48 715 224 232 38 » 39
- = g _?AJ‘ K ’ 2) ks T—
107 7 510 716 225 731 &5 41 7 42
S it i s Sl S e
12 411 213 921 223 530 736 5 45
— J T: —_ ; 7 ":-4 K o el
19 415 716 220 525 728 s 34 7 37

| 1 |
el L N) 2 ; J— I w el 5 —
i i i g
23 419 218 £ 23 528 7 31 « 35 &«
i L]] |] |

-
..4

Figure 9: Cell values at the end of forward propagation.

3 3 . j P y ; Y 3 © .~-',jv-,' A
AU OUOGONOUCOOOCICU IO~ A MICH NI Mo T Mo PO g P K e P . _. 2

AT
A

L
s FeN.

G
. -

L WY
Xaul

W Ty e T T LR

% L9, 45, 085809 R sV .00,

BT + B T
14 R L N O TR T I T T WL ML UL WL W 2P W M R L N U NUNUNL FURLVUNGL N NN R NNy ey g < o,
Y IS !

o
-
-

_————
&

~
-—b
-
€y,
N
(]
‘y
N
[
T
ol
(7]
&“
(&)
o
s

°

D N -Q|+ (p —
4.
L. .
]

. b

~ N N & o
'8
N

% 1)
LB,

T

Ny
W
w“w @ g

.
+

4

~
‘n
@D

~d
-

232 638 2 39 e

.]
2 S=t— T T Oty

S 41 7 42 e

4 & & 1P o Ny
Tt e

I
;
LS
[N~]
n
©

LY

4

-t
o
‘g
~

10 ~ 1

o
‘S
N
(4]
\O
[¥]
-—b

k) - "
‘ g -

223 530 5 36 5 45 bxy

— 4 o ‘:
0 525 7|28 & 34 737 XX
: J! = 4-" 3—' :’.‘

3 628 731 435
| | !

i
I

r
o b
Q-
-

N

¥

T
<.
|
|
&
<
i
&
]
e

1 19 415 J16§ 4

0 23 419 l: 18
|

N

|
&
|
]
&
LS

|

n
N

[~ %

Figure 10: The backtrace route.

ﬁ (d AN vo>

) A b " . - C - , W W 3 an
S S OE S EGOOCOOSOBOSONAAOOINOO M NOUOUOOOONC N L R KN R U N s D S QU AR K N O SOl

\ N
3. Channel Router ':':E',
'

Channel routers are perhaps the most widely used routers today. Their pop- :::‘

‘.l'.'

ularity has resulted in the development of a wide collection of channel routing W
techniques that efficiently interconnect more diverse architectures. The first chan- \ '::
&)
nel router was introduced in 1971 by Hashimoto and Stevens [Ref. 13] to route ',0:{:
...’l

ILLIAC IV computer control boards. These two layer boards consisted of up to 165 e
: A

identical dual-in-line IC packages in an 11 row by 15 column matrix. The channel ;::‘:
)

\)
router was developed to exploit the large regular routing regions created by this E’g',z
b .x

geometry. A
As described by Rivest and Fiduccia [Ref. 16], a channel routing problem is :::E:

Q'x(

specified by: "::(
LN

1. A channel length A.

2. Top and bottom connection lists T = (11,73, ...,T)) and B = (By, By, ..., B)), ::.:'.:
where B; and T are the net names for the pin at the ith column of the channel. :.:a;
"' .
3. Left and right connection lists L = (L;,Ls,..L,) and R = (Ry, Ry, ...R,))
specifying which nets extend through the ends of the routing channel. !
o
A channel routing solution is specified by: ..'.?
G’gf
1. A channel width w representing the number of tracks used. l‘::i

2. For each net n, a set of connected horizontal and vertical wire-segments whose .
endpoints are grid points (z,y) with 1 < y < w and 0 £ z < A. Segments et
" with endpoints (¢,0) or (i,w + 1), where ¢ is the ith column of the channel, st
must be included in T; or B;. Nets in L must have endpoints at z = U, ‘e‘;'.:}
while nets in R must have endpoints at £ = A + 1. Segments oriented along \',:.‘:

the channel length are called tracks and usually are assigned metall, the !

layer with the best performance characteristics. Segments that run across
the channel are usually shorter and are assigned a routing layer with inferior 2
electrical properties, such as polysilicon. When required, the different layers :t

are interconnected by means of cuts or vias.

To distinguish it from its descendants, the original channel router is commonly
referred to as the left-edge channel router. It tries to minimize the channel width, 3
w, by maximizing the number of nets sharing each track of the channel. This is W

done in the following manner. Nets are sorted by the location of their left endpoint.)

23

-’ - r -~ w ~ X ; " "~ 'f'f - - - - -~ = .
P SN I & v Satea! !I-‘!l. N ‘.b.l't., DO ',v.l\ 05 6 N . MOINIRS AT AN

LRSS WAL T WICERE AWMLY N\ L a pY3 Y, 4 L IO NP} kS [2

Figure 11: The left-edge channel router.)

In the example on Figure 11, the sorted list is {1,2,3,4,5,6,7,8,9,10]. The router then by
selects the first endpoint, 1, and places it in the lowest left corner of the routing ,;5;
nrea. It next searches for a segment that does not overlap net 1. In this case, net 3
6. As nets are selected, they are removed from the sorted list. This process is "y
repeated until no more nets can be placed in the first track. The algorithm then ’ ":;
starts with track 2, which in this example is occupied by nets 2, 7 and 10. The .,
process continues until all nets are assigned to a track. The track selections made i
by the left-edge algorithm are shown in Figure 11. he

The track assignment method used by the left-edge channel router is guaran- v
teed to find an optimal solution to a channel, provided no vertical constraints are 4
present. If such constraints do exist, the left-edge router is not equipped to handle N
them. Vertical constraints occur when pins from different nets are placed opposite
each other in a column. This forces one net above the other to avoid shorting the
nets. Figure 12 shows a vertical constraints between nets 1 and 3, nets 1 and 2, nets ;
3 and 4, and others. Vertical constraints can be represented by a vertical constraint . 3

graph. A vertical constraint graph is a directed graph with its nodes represent-

] o w R Yo AL SNV RESG0D LAY RS CRT b RIS AR ERES N a8
RGN l’:_"y,l’s-“'.J?E,J!h‘,aﬂ:c.»,h‘l;‘,t. I P .0.‘.!. P B A .._.l.!' !!. "‘ <) Jh‘!c 34 T ,l‘.,u 5 04 "2 2O o S Y J.l.‘,l W A4 Welh)y

Figure 12: A channel with vertical constraints.

ing nets in the circuit and its branches depicting the relative position between the R

e - “
horizontal net segments in the channel. &

Figure 13.d depicts the vertical constraint graph of the channel shown in

Figure 12. The vertical constraint graph can be constructed iteratively by examining b A
%
. . 0

the nodes at each column of the channel. Starting at the left side of the channel :
described in Figure 12 net 3 is above net 1. This is represented on the vertical .]
: Y,
constraint graph by placing node 3 above node 1, and connecting them with a line T
"]

as shown in Figure 13.a. In column 2, net 1 is above net 2. Since net 1 is already :‘"
; part of our graph, the line from node 1 is extended to node 2 as shown in F igure ._,'v
%, ¢
13.b. In the next column net 3 is above net 4. The graph now looks as in Figure I
o W(n}

13.c. This process continues until all columns have been examined. In the example, Ny
o
O)
o

(]
25 1
5
‘a
'."'.

4

y

NN O
Y ()

AAGHGIGHO OIS IO I Ry LF Yol W, ";. "'IP "“(,IC. -
'"J'l'q'%‘s‘l‘."c‘.a’\‘u’\‘.*\'.q‘\‘.’\.\.ﬁ,t".\"J".\‘."‘,Q‘l.ﬁ.‘. .‘.l"»' DOOOONOOU RN W F AN UK LR R MDA RS RN AT X - M Mt

this occurs at the right end with the column containing net 5 only. Since net 5
has no vertical constraints, it is represented by a single isolated node. The vertical
constraint graph for the channel is illustrated in Figure 13.d.

The left-edge channel router fails to find a solution to channel problems with
cycles in the vertical constraints graph. Cycles in the vertical constraint graph
are called vertical constraint loops. As shown in Figure 14.a and 14.b, loops occur
when there are at least two distinct paths connecting two nodes. As Figure 14.c
shows, solutions to these problems require that one of the two nets be split into two
horizontal paths. This is called doglegging.

The original dogleg channel router was proposed by Deutsch [Ref. 17]. It
overcomes the vertical constraint problem presented above by breaking net 1 into
subnets. Net la connects the top two pins and net 1b completes the connection
to the bottom pin. The new vertical constraint graph is shown in Figure 14.d.
Dividing a net into subnets is not always possible because nets can only be divided
at columns where their pins are located. This means that cyclic loop problems can
be solved provided the net has at least three terminals. Cyclic loops involving two
terminal nets cannot be routed. Such a channel is illustrated in Figure 14.e.

Finally, a very different approach is taken by the greedy channel router pro-
posed by Rivest and Fiduccia [Ref. 16]. Instead of routing the channel on a row
by row basis as done by other channel routers, the greedy chg.nnel router routes
one column at a time starting with the left edge. In each column it performs the

following steps:

1. Makes connections to any pins at the top and bottom of the channel.

2. Combines as many as tracks as possible Ly merging or collapsing nets that
currently occupy more than one track.

3. Reduces the distance between tracks occupied by nets still occupying more
than one track.

4. Moves a net up if its next pin is on top of the channel or down if its next pin
is on the bottom.

26

. M »

3 ‘ «‘ r, ” LB ! v \ . . . 'Jl' . WY "J‘ 'v"w . \'1'_&
""“"‘L \A l’n?l (% N ‘O,Q'n l'u!"t."ll'o‘.l'o l’:’.’t. 2% 2N B0 e 1, 8% e ¥ ‘Q ‘l " U™ s A oM LM L .- .(Py My . [y

A R I ")
LA w0)

Ny A8

(a) (b) b

(C) (d) . "

Figure 13: Making the vertical constraint graph for channel of Figure 12: (a) first \
column, (b) first two columns, (c) first three columns, (d) final solution.

SV]
~]
%

an
e

RN n - . - . 5 . - » LT LY S g gty ,’! "'.“
DU ‘A'.‘-'.'A‘.‘n'.'c‘.'n'.'l‘.'A'g‘a'.‘l':'o’:’aﬁf‘u‘!‘n’. RO ONOCUOOE K KO O KON Mt L L M Ry U Do TR AT AR AN AL A

- - -

o n ey

Pogflonfiogiiad ot ool

- F

(a) (b) (c) X

—e e

S gt o

-t
N
-

: (d) (e)

- 2% %

<

Figure 14: Vertical constraint loop: (a) channel, (b) graph of (a), (c) solution, (d)
graph of (c), (e) channel that cannot be subdivided

s
gl acy

PV O e g WA
x ¥ v v

¥,

)

A X 5 Y -, o . N " % 1%] N W (Y t¢! ’ 'u
; : 0 RCIENIAD - (e IO
ROAONOONG W ed ety KN YOO N i R, L R L S Ty A X) C) e

. - © 0a® Ba® Bat o Bmc ¥t 02’ aa" 202" 0a'ou” o808 0d ot
RIS AW LY U UW L W) :.».'.1"I‘v'.'al|-4r.’.’f.'l"'!lo'!'tr»| $o® By U \J \J '

Figure 15: A channel routed by the greedy algorithm. ue

5. Adds a new track if a pin can't be connected because the channel is full. e,

Figure 15 shows a channel routed by the greedy algorithm.

The greedy algorithm still suffers from some of the problems afflicting other
algorithms. First, since it looks for local optimums, conditions could be created ’
that result in unworkable routing situations later on. Second. a cycle in the vertical

constraint graph might make the channel impossible to route in the available channel

¢

. . . ¢

length. The channel in Figure 16 provides such an example. Nets 3 and 10 cannot be ::l

(]

completed because they are extended to the right edge of the channel. To complete :',:
this problem, the channel length must be increased by two columns. 3

)

4. River Router 2

.:: y

The river router offers a fast and efficient exact embedding technique for the ::,‘

!
interconnection of a specific type of routing problem in one or more routing layers.

]

o

29 i

M

“

R

o
SN AR
» - » -

L . ' ‘ O AN (g Nt BTt R AL S J\{\'-\f\'-\f\r\{‘,ﬂf RCEAS W
;.:“'~.A"l l~"9"‘0..) .I.»“IJ .-_"'n.,"- A .'\..h Hh L 'l‘-'l b a" *) ‘(A \ A o ; Y (a2l

Figure 16: A channel unroutable by the greedy algorithm.

30

" M " . 1 - ™ .
Lot Gttt e l’bl' At DO t‘ﬂ!‘n‘. W0, A"'o’o‘. foniX, ‘ Vi, a‘.‘t‘?i‘.\l". (0l 8" “” l’o W 0'5‘! s

N, 0N W
et S AT, M“‘o" .

PRI R
[N &

v

- g

.

. a8 .y . . W ONT YN
‘Ravt » (TN S TOR TUN UK TN (W TN U \ATO) O J . W),
l'l'lww‘q‘i'x."i't""'l‘!) Ba® Mgl 0g? $,° F4° 0" R AR A Ba® {

a2

83
[:]
S

Figure 17: The river routing problem

It is the prescribed router when faced with: 3
1. A restricted or fixed routing space. \
2. Terminals located on opposite sides of the routing area. 7
3. When only one routing layer is available, terminals are positioned so that no !‘:'
“crossovers’ are necessary. 3
The router may be equipped with optimization routines to minimize the river width.
The river routing problem is more formally defined in the following manner. 3
Given a rectangular routing region with fixed dimensions, a set of n connection)
points ordered from left to right along the top T = (T1.73,....T%), and a set of n
counection points ordered from left to right along the bottom B = (B,.B,,.... B.,). ?
the river router generates n wires to interconnect each (B;, T;) pair (see Figure 17). ':'f

The wires must lie within the fixed routing region. If a one-layer river router is

. M
used, no “crossovers” are permitted. N

Although the river router solves the problem given to it efficiently, few ci.cuits

spontaneously produce layouts suitable for river routing. As a result, river routing ’

31

e AT ATt vy . ey PR P A
1 b R AT LA AT 1 TN P L TR R N A A C AN TR AL AR ke ¥ g Sl L R s
KN o‘.‘l‘»‘c"'n‘ ﬂ'.'-'..'h‘.‘c".'\'. LA u‘..‘n'. LAl WS R n'! o O it YN i o a3 A o & > "y PN D X

- . . ¢ XM " . P TP TS VO YOI YO o L iyt Rg® B’ %a’a0h ata ad et ah
:‘.bur‘a'v"ﬂrr!‘l'n-'a'n'la'e'rtQqaonutv XA 9g° @a* a4 v

almost always presupposes less than optimal cell layouts as the order of pins in one

river bank is made to correspond to the pin order across the river. These changes

-

inevitably lead to less efficient designs. MacPitts’ approach to routing between

data-path and controller provides a clear example of this problem. To comply

with the requirement for no crossovers imposed by the river router, MacPitts must
compromise the optimization of either the data-path or controller layout. Since the g
data-path is usually the more complex structure, MacPitts decides to make the pin ¢

order of the controller correspond to the order in the data- path. The results are

X R G

long horizontal polysilicon runs that span the entire controller, and a controller that

may be larger than necessary.

5. Moat Router

o

The final step in the layout of an IC is the routing of internal cells to a ring of
i pads on the circuit periphery. The peculiarities of the pad routing problem generate
a new set of heuristics which make the design of a routing scheme to specifically

solve this problem worthwhile. Since the region to be routed is usually in the shape

I LI

. of a moat, the term moat router was coined by R. K. McGehee [Ref. 18].

-

;: The pad routing problem is actually an instance of the channel or river routing
b

EIT R I

9 problem. In fact, the moat is really just a channel bent into a ring. The horizontal
tracks found in the channel router are converted into concentric circles and vertical
o columns are transformed into radial columns (see Figure 18). "

Moat routers can use one or more routing layers. As with channel routers.

; when two routing layers are available, the better conductor is assigned to wire the

4 longer lengths. In the moat router this corresponds to the layers of concentric

XIS

-

tracks. Since the radial columns are usually much shorter, the poorer conductor is

-

3 used there.

.

R

X 32 '
[

[}

)

bd
™

A e

. - o R U b AP W g e ., P L
ORI o J S v T P o RN A T TN e ST T e A e S N N
TSIOR X) n."....viﬁ l-l'c bt By R ILO S AN T A F Ma S s e s b Y L BT

-
s v BV, B

~-

< agt, . - - <abtada AVa”
B T T T T N T N TN UM L% UH LW U OOV O O S OO RO e 13 avacnat ban VIR bt A s, Ry Vo AVa ave §*y
< I L4 5 » .

Figure 18: Concentric tracks and radial column geometry of moat routing region N

longer net length

(a). Two Terrmnal Net

Jongest net length meawm net lengm shartest net length t
®). Thwee Terminal Net :,._

Figure 19: Moat routing direction ambiguity

33 >

.
- A AT R G R Iy Ty S T O L N N A At S e Wb iy
‘-'0 6"‘A ln. W ll'&.) .“,. X ' &'\ i ."[') @ Ry .1 .H L ";‘J\ r".‘ > Cyll 0.0 ’.‘ o4 M =" Y " ‘0 LWL oty L

y N ™ e I)
T O T T A T bl i W SO P e Y ot

Though similar in many respects to the channel and river routers, moat

routers introduce a unique problem. Because a moat is a closed loop some am-
biguity in selecting the best routing direction can occur. Within a channel there is
no ambiguity in routing a net-list. In a moat, a two terminal net can be routed in
two ways, a three terminal net can be routed in three ways, and so on (see Figure

19). Selecting the correct routing direction is crucial if optimal designs are desired.

C. SUMMARY

Selecting a specific router from the many available can be a very difficult prob-
lem. The global router divides a large problem into many smaller and simpler ones.
The versatile Lee router is an exact embedding algorithm that will find an optimal
route for a net, if a solution exists. Its demand for computer time and resources
however, cannot be always satisfied.

Channel routers require much less information but are limited to those problems
that can be expressed in terms of a well defined routing region with net connections
at the edges. The left-edge router results in optimal solutions provided that no
vertical constraints exist in the channel. Vertical constraints and cyclic constraints
are handled efficiently by either the dogleg or greedy channel routers.

The moat and river routers are actually channel router variants. The moat
router differs in that its routing areas form a ring. It is well suited to solve the pad
routing problem. In the river router all nets have a terminal on each “river bank”.
When only one routing layer is available, the net-lists must be arranged so that no

crossovers occur between nets.

34

NN e

e g A . e
PPN N N W AN SRV OARAY

My

LR

’
A

II. ROUTING IN MACPITTS

The MacPitts compiling process produces a predictable design architecture con-
sisting of a variety of functional and physical components. To completely intercon-
nect a circuit, a variety of ad hoc routers, each intimately tied to the specific problem
at hand, are used. In this section MacPitts’ approach to routing between data-path
units, between data-path and controller, and between the interior circuit body and
pads is examined. The LISP functions discussed in this section are enclosed in Ap-
pendix A. Throughout this thesis, MacPitts’ function names will be indicated by

bold font and function arguments by italics.

A. ROUTING IN DATA-PATH

Starting with basic building blocks called organelles, MacPitts assembles a data-
path hierarchically. The data-path can become very complex. An organelle is a
hand-crafted one bit representation of a particular logic function, arithmetic func-
tion, shift function or comparison test. For an n-bit word, n organelles are stacked
vertically to form a unit. A description of the MacPitts data-path design and rout-
ing organization is presented by E. Malagon [Ref. 9].

All inputs to and outputs from an organelle are routed to the data-path bus for
transmission. Figure 20 illustrates a typical data-path design. Buses are located
directly above the organelles in each bit slice. They are easily identifiable by the
long polysilicon runs.

One curious feature of MacPitts designs is the requirement for all connections
from the pads to enter through the left side. This has far reaching implications. For

example, a signal produced at the far right end in the data-path must be routed

35

PR R e P e P WA A Y e R AR AW A Y AN
AN O SR OO0 = TN O e O o Lo P A TN A O D T I T A DA LA L L

Figure 20: Typical MacPitts data-path design

across the entire data-path in polysilicon. For large circuits, polysilicon wires in
excess of 1000\ are produced.

The data-path bus is produced by get-buses-from-data-path. This function
calls on get-buses-from-unit-lists to collect all the participating bus terminals
from the various data-path sources. The list of sources include: internal inputs.
registers, multiplexers, output ports and organelles. The function that collects all
the terminals with connections to pads is get-basic-buses-from-port-output-
unit. This function uses the macro make-left-tip to insert the attribute ‘left’ to
every port-output point. The left attribute causes the bus wire to extend from the
internal connection to the left edge of data-path. If the macro make-right-tip
were used instead. all data-path connections to the pads would take place through

the right side.

B. ROUTING BETWEEN DATA-PATH AND CONTROLLER
MacPitts’ control section performs Boolean logic operations on various signals

to generate signals that drive the multiplexers in the data-path. The controller logic

is obtained by means of a NOR gate array called a Weinberger array. Weinberger

arrays offer advantages such as a relatively compact structure and no need to cross

A AT e T S s B N AN S S O A N DT

AU R o

. o . R X ST . w L, e Y .
O G G P Y e e A S T 7 N N R S AP AT

, r a'd et - N - 1 26 xR & “ati ath 2%k &%) a¥ VE a\g ahi af@taVi'ath g¥eabf o
Lty UgR ik) VeB B R V3 Va0 ad 0B Fad L p bRt e e L8 MY NN 4 AR > - wNu '.',

i

signal nets. The controller connects directly to all control signal pads, tri-state i:'g

pads, clock super-buffers and data-path. ::EEE

Routing between data-path and controller, as well as between super-buffers and ‘?

) controller, is performed by a single layer river router with a non-optimal, but effec- s:f
tive, channel-width calculation routine. The routing layer used in nMOS technology ;SEE

) is polysilicon. This choice simplifies the routing algorithm and reduces area re- i
quirements (due to its smaller width). Unfortunately, when long wires are required. ‘ E::’

polysilicon’s high resistance can slow the circuit down significantly. .:l?::

On the positive side, the minimum feature size for polysilicon is less than that 3

of metal, the only other practical alternative in nMOS technology. Each polysilicon :I

track requires 4\ units, compared to 7\ units for metall. A track is the sum of ':‘!:"

the minimum layer width and the minimum spacing between layers, as specified

by the Mead-Conway design rules. A second advantage, relevant only in nMOS, is ::g'
that using polysilicon eliminates two poly-metal cuts per net. These cuts would be '.::c':‘
required to cross over the power and ground rails located along both river banks. f‘
- Since each cut contributes an average capacitance of 9.6 x 10~* pf/mil? (based on :.:::i:'
metal over poly capacitance of 0.6 x 10™* in 4y nMOS technology [Ref. 1: Table :E:E‘
4.5, pg. 135]), the use of polysilicon, particularly in small circuits, may result in ‘:,".‘
superior performance. This is of no consequence in SCMOS where two metal layers ":.::::
are available. :{:‘:‘
The problem with polysilicon is its relatively long signal propagation time de- :"
lays. Polysilicon is approximately 100 times slower than metall {Ref. 1: Table .:i:i
4.7, pg.136]. As routing material, it can be used without appreciable circuit per- '::?
formance degradation as long as 1, < 7, where 7, and 7, refer to routing wire
delays and gate delays, respectively. Under normal conditions, this relation holds ‘E
true for polysilicon wire of lengths less than 200A. Above 200, degraded circuit (‘
performance resulting from signal routing can be expected. Unfortunately, routing .
Sy
n
t)
0,
o

K .] WO PN N O Y/ .y ” “oF Tt) .W~TF"
OO0 IR OO ORI RO NIRRT = P TN SN AT I 1P 2 1 L0 JUR L M it Lol AR A L YA) = b s

»! oy

Figure 21: Typical MacPitts controller design. ol

lengths greater than 200\ are common in routing from data-path to contioller. In o
fact lengths in excess of 500\ are found even in modest sized circuits. o
Regardless of the layer used, the single most significant problem with the data-
path to controller router is its use of a single routing layer. This means that, since] :
crossovers are not allowed in the routing area, the terminal order in the controller ::'
must correspond exactly to that of the data-path. This is a serious design constraint
that results in large, slow controllers. A typical MacPitts controller is illustrated in ;' '
i

Figure 21. Notice the long horizontal polysilicon runs used to interconnect signals :::;
that interact with each other. Long runs could be avoided if the controller terminals
were ordered to optimize the controller and not in response to the order of terminals s
in the data-path. Also, longer runs require more tracks, because less track sharing)
is possible. This increases the controller height and area. In summary, a one layer

router has a negative impact on both controller performance and size. '
A\ R
38 nai

-

' i L LR % U] -v'\-"v v o omyw W, W y . - N
L D T Nt NN ST A TR AR DA R D S R R iy £ ORI A i

o 15 et TR PO TSR TSN) YRR 2 a8 R L B¢ §F SR etala AN K (R L Py XY 5 YUNVIMNN URIR AR RN PO UL TWUY
s o I L 3 : 3 .4

In the process of laying out both the data-path and the controller, points with
the ‘river’ attribute are created. A point is an L5 structure consisting of a point-
name, x-coordinate, y-coordinate, layer and up to three attributes. L5 is the LISP-
based layout language used by MacPitts. Attributes are keywords that either iden-

tify a point to a process, or give qualitative position information about that point.

In this instance, ‘river’ identifies all interconnections between data-path and con-
troller that need to participate in the river routing process.

The call to river originates in layout-object. Before calling river, layout-
object first brings together all points that need to be interconnected into a net-
list. It then formats this list as required by the river router.

Net-list extraction is accomplished by obtaining the desired information from

larger lists. To this end, the variable top-part, which includes all details necessary to .t

lay out both flags and data-path, and bottom-part, which contains the details to lay :::E

out the controller, are created. From these, the variables top-bank and bottom-bank :;:'5‘:'

- are formed. They contain the x-coordinates, sorted in increasing order, of all points :::
in top-part and bottom-part with the attribute ‘river’. By design, the ith element in '7

) top-bank corresponds to the ith element in bottom-bank. 0:.::::
River is called in the following fashion: ::::::

(river 'NP 2 (wing-span bottom-part) top- bank bottom-bank) ':':

River input parameters are: layer, width, stretch, left and right. In nMOS technol- ':‘::"f

ogy the leyer NP indicates polysilicon. The width is 2, the minimum polysilicon ‘..:'

width allowed by design rules. Stretch will be discussed momentarily. Left and right :}-’

correspond to top-bank and bottom-bank, respectively. This change in names, top to {;r 3

left and bottom to right, reflects an actual change of orientation that occurs while e

in river. The original orientation is recovered by rotating the output list, river- ..:

layout, clockwise before appending it to internal-layout. Internal-layout contains ;

- |".
&

39 .'?:E

%

'Y

AT

, [L) PYor e T r P A
‘g“li"\‘l’.v,’A’!‘\‘f‘b‘,‘b"'l"‘l”",'l';‘l’. VOO MNIOOR A R OL i Mo M M SRR MR A e ANDn, A SIS L AL M oy :9"‘

~ \
RS IION LI"’..“!\“ O"‘.\.‘.l".t) I“. L N

left pad routing

tegion DATA-PATH

CONTROLLER

Figure 22: Wing layout

everything necessary to produce a layout of the circuit body: top-part, bottom-part,
wing-layout river-layout and skeleton.

Stretch represents the height of wing-layout. The name reminds us how far each
net must ‘stretch’ past the bottom river-bank to reach its terminal on the controller.
It is determined by calling on wing-span with bottom-part as an argument. Wing-
span extracts all points with the ‘wing’ attribute from bottom-part. The attribute
‘wing’ identifies those control signals from the controller that connect to pads. For
each such point, wing-span increments stretch by 5A. Finally, an additional 1A is
tacked on to stretch. Why does wing-span require 5\ between tracks while river
needs only 4A? As illustrated in Figure 22, since each ‘wing’ net terminates on a
poly-metal cut during pad routing, the extra 1A is necessary to satisfy design rule
requirements for 2\ separation between poly and poly-metal cuts in the left pad
routing region.

The river routing process is performed by river, riverl, river-span and river-
spanl. As their names imply, river-span and river-spanl calculate the required
river width to accomodate all nets. Although not an optimal algorithm, river-span

usually finds optimal or near optimal solutions. River-span uses layer, space, left

40

T 4T T MR S

PEEES

- -]
WSS ¥ St

ey

‘h .?h '.”lr ! _‘4‘_‘!‘!'(N h‘!’n‘..l

Figure 23: Solution to river routing problem, (a) MacPitts solution. (b) optimal
solution.

and right as parameters. It determines the number of tracks required in the channel
by calculating the run-length — the maximum number of consecutive nets for which
the x-coordinate of one bank is greater than that of the other. For example, a net-
list can be described by ({1 12 16 29) (5 10 25 33)). The list enclosed in the first
inner parentheses represents the net terminals on the top-bank, while the list in
the second parentheses corresponds to net terminals on the bottom bank. For this
net-list river-span returns a run-length value of 2 because this is the number of
consecutive n.ets where the terminals on one bank are consistently either greater
than or less than the terminals on the other bank. In this case the nets are (20 30)
— (40 30). The product of the run length and 4\, the minimum space required per
polysilicon track, gives the span of the river. The algorithm is not optimal because
it fails to recognize that nets which meet this condition and do not overlap can share
the same track. This illustrated in Figure 23. MacPitts’ solution to the problem

(Figure 23.a) uses two tracks. The optimal solution, shown in Figure 23.b requires

only one track.

41

-, v LN A 1 1 4 LR LR L LA T
,‘h‘. I'.'\‘...b-\ "(NN\‘, F’* L} f‘g"‘ l.' " n.‘ .'

5 '\',w; AN R AT A o "\"\.‘\'-\"' vt

The real workhorse in the river router is riverl. To function, riverl needs
the arguments used by river as well as span, where and flag. Span is the distance
calculated by river-span. Where is the y-coordinate of the track which the net

being routed is to use. Flag can take as values either “down”, “up” or “straight”.

N
e

“Down” indicates routing in the downriver direction T; > B;. “Up” indicates rout-

e
-y
P P

ing upriver when B; > T;. “Straight” corresponds to routing across the river when

“

-
-

T, = B;. Essentially, flag provides a means for the algorithm to ‘remember’ whether

the previous routed net was routed upriver, downriver or straight across. Flag is

s e
Il

- -~
o
-

a
o

important to determine the value of where during the next iteration.

Riverl employs a simple and effective recursive routine to route all nets between
left and right in the manner shown in Figure 23.a. Figure 23.b illustrates the same
problem optimally routed. Since the nets are pre-sorted, applying the basic LISP
function ‘car’ to both top and bottom-banks yields the terminals that need to be
routed in the current net. Applying ‘cdr’ simultaneously to top-bank and bottom-
bank exposes the next net.

Riverl first compares the x-coordinates of the ith net by applying the operators
=,>, and < to the ith elements in left and right. The following listing illustrates
all the possible cases.

1. IF left; = right,? THEN

* A single vertical polysilicon wire segment is laid out between net termi-
nals.

* flag = ‘straight’

2. IF left, > right,? AND
- IF flag = ‘down'? THEN

* A vertical layer segment is laid down from data-path to where.

A horizontal layer is laid down from left to right.

A vertical layer is laid down from where to the controller terminal.
where = where + (width + space).

flag = ‘down’

*
*
*
*

R RS

- IF flag = ‘up’? THEN

* A vertical layer segment is laid down from data-path to the first
track.

* A horizontal layer is laid down from left to right.

* A vertical layer is laid down from the first track to the controller
terminal.

* where = where + (width + space).

* flag = ‘down’

3. IF left, < right;? AND
- IF flag = ‘up’? THEN

* A vertical layer segment is laid down from data-path to where.
* A horizontal layer is laid down from left to right.

* A vertical layer is laid down from where to the controller terminal.
* where = where — (width + space).

* flag = ‘up'
- IF flag = ‘down’? THEN

* A vertical layer segment is laid down from data- path to the last
track.

A horizontal layer is laid down from left to right.

*

* A vertical layer is laid down from the last track to the controller
terminal.

* where = where — (width + space).

* flag = ‘up

C. ROUTING TO PADS

There are three phases to the process of routing from the circuit body to the
pads. They are pad placement, net extraction and net layout. MacPitts’ approach
to all three is very inefficient. There are three significant flaws with the layout
method used by MacPitts. First, since all inputs into the circuit body must en-

ter through the left side, extremely long routes and unecessarily wide channels are

43

".lyn-;n-(
’ (R 2 o/ N ol 1o KN

1 A Lyt VA AR LS N A5 NIV ey y',-’:'
Y .‘n.\ft.l.ﬂ.t.,'..[PN " IR AN A&

o S T TR TR TR R A
¥ I-.\N\'. o.n e ~~

- e o
o

)

-,

-
-
-
o

L)
A,

et
P I X

v
ate
x_J] d

PR AE,

S

-

g oy
-

2,

AN .
WL

formed. This problem is not caused by the pad router functions, but by the as-

signment of the ‘left’ attribute by data-path, to all pad connections. A detailed
explanation is given in section III.A. Second, pad placement is only allowed on the
top, right and bottom sides. If the pads do not fit, the chip is extended in length
or width or both until all pads can be accomodated on those three sides. Finally,
pad position is dependent on the pad number assigned by the user in the source
file and not on any optimizing algorithm. The combined effects of these problems

are the large empty spaces usually found in circuits designed by MacPitts. This is

illustrated in Figure 21.
1. Pad Placement

MacPitts’ pad placement algorithm lacks any ‘intelligence’ to improve either
circuit performance or area utilization. The functions directly involved in this
process are place-pins, extend-right and extend-top.

Interestingly enough, place-pins is capable of placing pins on all four sides.
It uses a four case conditional to assign pads with pin numbers less than number-
pins-per-side to the top; it then assigns those pads with numbers less than twice
number- pins-per-sides to the right side; next, pin numbers less than three times
number-pins-per-sides are assigned to the bottom. Any remaining pads are assigned
to the left side. Pin numbers are assigned to pads in the circuit source file.

Why then doesn’t MacPitts place pads on all four sides? Because number-
pins-per-sides is calculated by dividing the total number of pads by three and then
rounding the result up to the next integer. Thus, circuits with 16, 17 and 18 pads
all yield 6 as a value for number-pins-per-side. By the time place-pins gets to the
left side, there are no pads left to place.

The functions extend-right and extend-top are used if the current circuit
length or width is insufficient to accomodate the number of pins assigned to it.

These functions are independent of each other, responding only to requirements

44

e B g s N8 SN) '..
X I fd

- .

ol

P

' - -~
s v
e -

<

o

"t

e L
" CJ
--’ﬁ

L5

‘ g 1 K ratatata A%a %0 B2 '8 U 8.5 0l Bed et 2a® 18%.12"02"a%22 4 2" &" T
P L PN W A UL U URS TR UN AR N N VU RE YU e 3 Y)Y (X1 1) RN V

AL
B
]
N

Jdb i ‘ ' H

)

-
A1
Tt
. -
o

:
L
5

2

. Figure 24: Routing pads in MacPitts

45 .}‘

S‘
. L e P -~ .- . a a S A N = 0" At A RN
A RN R ‘ N e e N N LW NN D D A
Ve U0 TP ol Do i Ty o8 o AL AR A0 PPN N o a ol o WG L ORI M i

. . a¥aAPA e ata" . 5 . " -
R R T U L R R A A YOt AN AR TN O 2R AN P TN O N AN Rt 8" 1 * Vo' gv, o + a4t WA a vat acal v vab v ~

set by number-pins-per-side. For example, an 18 pad circuit with a length that
accomodates 10 pads and a width that fits only one will be extended by extend- y
top until the six pads required by number-pins-per-side fit on each side; a five-fold

increase in area. The fact that the original dimensions can accomodate 22 pads

-

is irrelevant. These extensions can have a drastic impact on the final chip size as -
demonstrated by this example and Figure 24. T
i 2. Net Extraction | A
The functions directly involved in the extraction of nets are: extract-nets, .’
extract-basic-nets, order-basic-nets, rotate-basic-nets, extract-subnets and _E
| extract-[side]-subnet. ' All the data necessary to form net-lists can be found in :f
‘ the parameters pins-layout and internal-layout. Internal-layout contains every de- -‘
i tail necessary to actually lay down the circuit body. Likewise, pins-layout contains ::
; everything needed to produce a layout of the pads. '
MacPitts starts the net extraction process by merging internal-layout to pins- ::
‘ layout. This list is then operated on by extract-basic-nets. This function serves T :
y two purposes. First, it makes a .ist of lists, with the inner lists containing all points l
.‘ with the same name. Second, it retains only those points with the attribute ‘ring’. - .é
The ring attribute identifies those terminals that participate in pad routing. To an :}
input such as: 3

(((11) 10 20 nil (nil nil nil)) ((port input (a 1)) 0 100 nil (ring left nil)) ;
((port input (a 1)) 100 200 nil (ring right nil)) ((phic) 0 50 nil (nil left ring)) 4
({phic) 100 200 nil (nil top ring))) -

Y

!Many functions in the net extraction and net layout business come in four flavors: top, right. Y.

bottom and left. For each function type all flavors operate in the same fashion. For clarity and

! brevity, the generic [side] will be inserted in place of the specific flavor whenever the clarity of the
issue being discussed won’t suffer from the substitution.

.
: 46

. e . ity s e ety e R PR M A A P W e T N T AT T KT AT AT AT A SN AT NN
RO e OO0 RO PRI S ! AN A A oy AT A A N AT Y

extract-basic-nets returns the following list: N,
((((port input (a 1)) 0 100 nil (ring left nil)) " .«“
((port input (a 1)) 100 200 nil (ring right nil))))
(((pk'xic) 0 50 nil (.nil l.eft ring)) L
((phic) 100 200 nil (nil top ring)))) o
'c::
Next, each net in basic-nets is arranged in proper order by order-basic- :ES:E
nets. This is accomplished by sorting each net with respect to an operator supplied 0
by basic-net-point-further-left?. This function examines the attributes of each .'.sg
of the two points and supplies the correct sorting criteria to handle the specific :ﬁ
problem. For example, given the net: ..
(((phic) 0 50 nil (nil left ring)) ((phic) 100 200 nil (nil top ring))) :};"’é
the operator (< (point-y pointl) (point-y point2)) is supplied. In this case point-y :‘:::':‘:
of pointl and point2 equal 50 and 200, respectively, so this net is already in the "
correct order. "::2
At this juncture each net consists of at least two ordered points. The nets :{E‘E‘f
are now processed by a rudimentary global router. It is rudimentary because, 29
while it does assign routing regions to each net, it does so with little emphasis on > ‘
optimization. This global routing function is the responsibility of extract-subnets, : ,:é
extract-subnet and extract-[side]-subnet. "
These functions work in a straightforward fashion. Remember that each net N
point may have up to three attributes. The set of allowable attributes depends on 'I-:';‘
the operation that the point is destined for. For example, all points involved in e
pad routing have the attribute ‘ring’. A second attribute identifies the side where :‘::
the point lies and can take values of either ‘top’, ‘right’, ‘bottom’ or ‘left’. The :
third attribute gives additional position information and can take values of ‘first’. | L
‘last’ or ‘nil’. Extract-subnet queries the first point of a net to determine which rz
side it is on. It does this through the macros is-point-top?, is-point-right?, :5_,
is-point-bottom? or is-point-left?. The net point must respond with true to __
S
47 o
N
Pa%
L R R A N e e S R D e Dt N DRV AT RO T S

ved ettt ik s ¥ < cas . o aat) A kR aatrs ik S AN Sl Y ag - W URTEY 'S VR WE AR R OO WA T i i s gt

one of the four macros. That macro will in turn call extract-[side)-subnet, where .:
[side] is the side in the point’s attribute list. For example, if the first point is on E
‘top’, extract-top-subnet is called. '.':

The various extract-[side]-subnet functions supply points necessary to al- .,:
low continuous routing of a net from source to target. Continuity cannot be guaran-

teed for a two point net. The net called (port input (a 1)) of the previous example

illustrates this point. One point lies on the right side and the other on the left. To

3P

connect them, extract-[side]-subnet must generate four new points. Two direc-

AN
tions are possible; either through the ‘top’ or the ‘bottom’. Assume that in this =o"
)
instance the top is a shorter route and is therefore selected. The new net is now: r
(il
i,
(((port input (a 1)) nil 0 100 (ring left nil)) :‘.i:
((port input (a 1)) nil 100 200 (ring right nil)) M
((port input (a 1) nil nil nil (ring left last)) AL
((port input (a 1)) nil nil nil (ring top first)) 3
((port input (a 1)) nil nil nil (ring top last)) 2
((port input (a 1)) nil nil nil (ring right last))) "
o
If the original two points were on a different set of sides than the example ;
above, a different set of points would be created. The process, however, remains)
)
the same. v
]
Extract-subnets can operate on nets with more than two terminals on one !’
or more sides. This is possible because extract-[side]-subnet determines the side :
)
of the next point in its original net, and calls on the corresponding extract-[side]- o)
A
subnet. The process continues until all points in the net have been examined. This)
o
capability is used in routing the control signal that places tri-state pads in either ;
v\ \]
the high or low impedance mode. b)
.
The final phase in the extraction process is the allocation of a track to each]
net segment. While MacPitts’ track allocation algorithm optimizes the channel '}
w
width, its inability to consider anything but the current channel results in a less ;J
than optimal overall layout. It lacks the intelligence to assign tracks to nets so)
‘.‘
48]
)
0
’
&
"

; L L I TP P R L IR P Iy PRI I SO N T Y LK o NN q_w
¥ "" AR »‘l.‘ "' '~ .‘l.,-. 'l'- 0 A-‘ ~ ‘- ,. MWIANN N ‘-".'-"' ..c SN A -.. LA s ' Al

JHh ha'sy NN

LR PRI TP EP PEP TN T TRSTE v g a'a at R U B U WU WU W WS WU TUR FOU IO U AN PO R s

that cuts and poly bridges are not required at the channel corners and between
pad-terminals and their tracks.
3. Net Layout

The output from the net extraction process is called nets. It is used by
layout-nets, layout-[side]-net and layout-[side]-point to perform the detailed
routing. The pad router uses two layers, metall and polysilicon to route the nets.
Metall is the preferred layer due to its superior performance characteristics. Polysil-
icon is always used along with two poly-metal cuts to cross-over metal interferences
from either power/ground metall lines or other nets. Henceforth, this structure will
be referred to as a poly-bridge.

Layout-nets is inefficient code. It will insert poly-bridges at the pad ter-
minals and at the corners between routing areas even when this costly structure is
not required. This is illustrated in Figure 24. Notice how a poly-bridge is used in
connecting segments at the top-right corner when continuous routing in metall is
possible. In other words, the algorithm always routes for the worst case.

Layout-nets routes one net at a time. To assemble a layout it considers
three variables: the side of the current segment, its endpoints and the location of
the power and ground pads.

The side where the current point is located is found by use of the macros
is-point-[side]?. A ‘true’ condition is returned for the macro whose [side] matches
the side attribute of the point being investigated. Consequently, layout-[side]-
nets, where [side] is the same as the side in the point attribute list, is called with
the net, to which the point belongs, as an argument.

In addition to net, the parameters top, right, skip and power are also used by
layout-[side]-net. Top and right are the width and length dimensions of the circuit
body. They correspond to eztended-top and eztended-right in Figure 25. Skip is the

x-coordinate of either the power or ground terminal, whichever is on the same side

K ‘) GO PRy
P T A SO U K AU A e o

‘.-r.;j‘-g“.d 6; o’

Al an wr_ o W W s
= eSeTaleTolw

as the net point in question. If neither power nor ground is on the point’s side, then
skip is given nil as a value. Finally, power is the width of the metal wire connecting
ground or power to the power/ground skeleton. Skip and power are used to position
poly-bridges and allow nets to cross-over power/ground wires.

In laying out a net segment, layout-[side]-net considers all the points of a
net lying on that [side]. The function calculates the coordinates necessary to extend
the layer from one point to the other. The actual instrument used to lay out the
wire is the L5 function rect. As the name suggests, rect defines the boundaries
of a rectangle in a specified layer. Its arguments are: layer, z-min, y-min, z-maz
and y-maz. Information gleaned from the attributes (‘first’, ‘last’ or ‘nil’), the track
number assigned to each side of a net by allocate-tracks, and the design rule
specifications are used to determine the value of the arguments used by rect.

Layout-[side]-net determines the segment endpoints from position attributes
of the net points on that side. It uses the macros is-point-first? and is-point-
last? to ascertain if either ‘first’ or ‘last’ occur in the point attribute list. If the
attribute is ‘first’, while operating on either the bottom or top sides, then a value of
2 is assigned to z-min. If operating on either the left or right side, then y-maz takes
the value top. If the attribute were ‘last’ then z-maz is given (right — 2) for a value
when operating on either the top or bottom sides, or y-min = 0 when on the left
or right sides. If neither ‘first’ nor ‘last’ is in the attribute list, then the point must
be either a pad or an internal terminal. The correct endpoint is obtained by using
either the macro point-x when routing on the top or bottom sides, or point-y
when routing on the left or right sides.

The method described in the previous paragraph finds the segment endpoints

along the routing channel. How are coordinates specifying the segment’s location

across the channel obtained? The location of the routing channels on the chip is

known. The lower-left corner of the circuit body lies on the point given by the

50

~
L) "t -...-‘

LR AT ;
RN AN 0 X ML N)

Pad 1 PADS o o
1 2 3 4 5 6 N

DATA ROU‘”NG (extended-right, extended-top) .

g

d(o ext.ended-r.op) DATA PVATH ~ ‘::.::

o

D | _Lss o

A ia Y i

N T s T - ‘.i
o A 2 BIT SUCES A P '
I A)
P54 trlto :
A U # (__ms8 10 S D
D 4 U i1 "Ry
S 1" A CLCCK BUSSES T N
o4 o

N = I)

G CONTROL ROUTING (I\s‘ 9
iereereesoon |:ig

o:"

$a

:

. POWER FRAME)

S «@?%&gsswm \E ;
? t

DATA ROUTING (extended-right, 0)

17] | [1s| |14 [13] |12
PADS

e

9@ -~ <,
-'l'{'r

g)

oo

Figure 25: MacPitts floor plan.

» - LW &) ’ A ¥ Rt Vs L7 Y b
.‘0‘:’0‘.‘0‘- W, '.I‘l.v .’I...‘, AL l‘-!l’- 3 ,l‘-. .I,“l. s 0%y 'l. N b ‘..“'. 1N 0% 0~I. X 4 A

. . . ad - - mat AT E . y o an -
LN T U TN AL NIRRT NN ¥ UG BT U T PU TP LT T PO TO% TR U U O A (e)

Cartesian coordinates (0,0). The top-right corner, on the other hand lies on the
point (right,top). These two points define a rectangular reference frame which is
o simultaneously the exterior boundary to the circuit body and the inner boundary

to the routing areas. The tracks are evenly spaced concentric circles, starting with

iy track number 1 near the inner boundary. The space between tracks and the width of

', each wire is obtained from the design rules. With this information, layout-[side]- :
:_!; net is able to obtain the missing y-axis value when routing on either top or bottom

’:.:' sides, or x-axis values when routing on either right or left sides.

5:; So far, the pad routing area has been visualized as four disjoint rectangles

: surrounding a circuit body. Actually, the routing area is a rectangular ring consist-

‘{f: ing of four disjoint rectangular areas and four small, square areas connecting them

:E:' at the corners. The interconnection of net segments at the ring corners is done by

;;: layout-[side]-point.

s':: Layout-[side]-net calls on layout-[side]-point, where in both cases [side]

:‘:‘E is the same as the side of the net segment being operated on. Layout-[side]-point .
: considers three questions to determine the correct layout: which corner? from which

;i':: track? and to which track? The answer to the first question hinges on whether the

3:::‘ point has an attribute of ‘first’ or ‘last’. For example, if currently in layout-top-

:“ net with ‘first’ as an attribute, then layout-top-point is called with “left” as a

53:: parameter; meaning, connect top and left segments. Likewise, the attribute ‘last’

::::: calls on layout-top-point with the parameter “right”, indicating a connection at

.; the top-right corner. The current point track number is obtained with the macro

;:3 net-track-number. The track number of the point it connects to is obtained with

): the macros last-point-track-number or first-point-track-number. With this

‘t. information, layout-{side]-point is able to connect two net segments as shown)
EE::' in Figure 26. Notice that regardless of the need for a poly-bridge, one is always

':E: created. -
I

o 52

, . hd . . ” - Y g F - -, N i
R 1 1l T T T e S Lo o QLA QO SO T 4N D O OO L DR A A AT AN, QO S

PP .
o !\." W, fi o 8%

. et 0Rt - ST R : gae fas - &' ala"
TR U U UYL UAI WU WU IR AU U NU L WU N U U WUNL WU MUNU YU WCYU W 3 WAl W M WL e wll

a3
W
7]

Figure 26: Routing moat corners in MacPitts ®

53)

R

R -

-
ST g R

Kl - ~am » -y
'-‘f‘n'f‘p‘ .'AL c‘!'d.h .'(‘!'l.‘.l‘!.h‘.‘l.- (A l.: l‘v,l‘-‘l v I.QAI.Q 0, l'-‘l.. us, 'b ‘.l. 3 5'.« ’l-"“"‘»“* » 4% ¥

D. SUMMARY

MacPitts’ routing methodologies are very inefficient. The choice of a one-layer
river router to interconnect data-path and controllers is unfortunate because it
forces a terminal ordering in the controller that usually results in non-optimal con-
troller designs. Polysilicon is not an adequate layer to employ in the river router
because of the long distances involved. Significant transmission delays result even
when wiring small circuits (less than 500 transistors).

The pad routing algorithm is also deficient. Pads are evenly divided and placed
on the top, right and bottom sides. Pads are never located on the left side. If any
one side cannot accomodate its pad quota, it is extended until it can. No attempt
is made to determine if the other two sides can accomodate the “overflow”. The
final placement is determined by an integer assigned to the pad by the designer in
the source file. Pad 1 is located on the top-left, pad 2 is located immediately to the
right of pad 1, etc. The last pad is located on the bottom-left (see Figure 24). No
effort is made to place a pad near its internal connection terminal.

Finally, it is possible to route the pad routing channels with one layer. However,
since MacPitts does not coordinate track allocation between the four ring channels,

polysilicon and poly-metal cuts are always used to connect net segments at each

corner.

o4

-y P

A A S A NSRS

:

'.:

3

&

)

W X

gt

TING IN THE M ,

l::

The inefficient circuit designs produced by MacPitts is exemplified by the 251 '::

1

transistor layout in Figure 27. This chip has dimensions of 1.78 mm and 1.74 ::‘

mm for a total area of 3.10 mm?. A circuit performing the same functions can be X
handcrafted into a much smaller design. Inefficiency can also be measured by per- !
U

formance. Large circuits tend to be slower because of increased routing distances. :§
. . . - .)

There are various reasons why MacPitts’ designs exhibit poor size and performance x

vt

. %
characteristics. This investigation has focused on the pad placement and routing ::«
;.

algorithms. A detailed description of MacPitts methodology in this area was pre- '}
sented in Chapter III. From Figure 27 the following problems can be observed:
'

.‘

“

\

1. All signals from the pads must enter the circuit body through the left side. j
As a consequence, long wires and wide routing channels are generated.

:

2. No effort is made to minimize wire length by placing pads near their internal ::
connection points. :::

b

3. Even when sufficient space exists around the periphery to accommodate all 0
pads, circuit dimensions may be increased if a side cannot accommodate its o

pad “quota”. The circuit in Figure 27 was extended in both the vertical and ,‘
horizontal directions. This resulted in the large empty areas to the right and o

above the internal circuit body.

4. Unnecessary use of polysilicon and vias resulting from an inadequate track)
allocation algorithm and the poor placement of the ground and power pads.

The high resistivity of polysilicon and the high capacitance of vias degrade L
circuit performance. \

l:q

This chapter introduces a pad routing strategy tailored to the MacPitts circuit ‘f

architecture. The algorithms are written in Franz Lisp and are included in Appendix |
B. Asin previous chapters, the LISP functions used in the algorithms will be denoted :\
n?

by boldface fonts. Their arguments are denoted by italics. §)
'

o

:: X

55 X

.i

'.
]

-

R A s A L D G S S e g e R A O O N A AR e e e el e e S e v

. . . oyt ataadA a0 . . na b ota ba b’ ot a2 a8 200 2D aV4 2% ot
. . . e e da® St oTac 6t €r ain atd aFS AR PO T TR TR W L WU g’ o o 3
T Sat Ta '3 ats a-d s 3 mi) a'8 a't av4 o Sy-ata’ 83 ath" o045 u®s 2t atd ave arp al v

E

]

3 T
= e | e)

Figure 27: Typical MacPitts circuit -~

a_*
-

0%

56

PEXRAI PN,

247
l.:’,l

.&[

b
9

- RV R
{ X) . : K R A o W ST Wy SR A P T R o i A T T A
YNNI et N 'r("""" o ""' e "(‘.' NV VIR RSN, ""{ e S N e "‘ SN N »

LN S IOV AU

‘s 1'.‘.. X ' .l".

.o'. e

A. DATA-PATH

One of the more conspicuous and peculiar characteristics of circuits designed
by MacPitts is that all signals from the pads must connect to the internal circuit
through the left side. This behavior has a drastic adverse effect on circuit perfor-
mance. Depending on the specific circuit geometry, circuit speeds may be halved.
The worst possible scenario is depicted in Figure 27, where an output pad on the
right side and very close to its internal connection point, must be routed clear across
the chip to enter the circuit. From here it is routed, in polysilicon, across the entire
data-path. A second ill effect is that channels become progressively more congested
and wider than is necessary. The mechanism that results in such routing nightmares
was discussed in Chapter III.

The solution to this problem is simple and direct. As discussed in Chapter III,
all nets must enter through the left side because the macro make-left-tip is used
to attach the attribute ‘left’ to all data-path terminals that need to connect to the
pads. Changing the macro to make-right-tip makes all such nets connect to the
right side. Unfortunately the same relation does not apply with regards to the top
and bottom sides, since the bus infrastructure available for routing signals in the
horizontal direction, does not exist in the vertical direction. Consequently, it was
decided to limit the accesibility of data-path to the right and left sides only.

The ideal solution to the problem is to divide the data-path in half. Anything to
the left of center should route to the left side. Conversely, anything to the right of
center, should route to the right side. Since the exact length of the data-path is not
known during the bus construction phase, this mechanism is not feasible. A useful
indicator of distance that is available, however, is the number of units required by
data-path. Since units are laid sequentially across the length of data-path, they

provide a rough measure of data-path length.

57

W, ";Ln.' '{ P f*(!

x J

e e e - -

. . . A
- - m - - N G G TT P LT AT OO U SN ,ﬁr._.r\.-\u-ur.'r.'r._f\r\rur,\- \q",‘
A A e e e e e W

The Monterey Silicon Compiler uses the unit number to determine if terminals

within a unit that connect to pads should route either left or right. If the number of
the unit being processed is less than half the number of total units, its terminals will
route to the left, otherwise they route to the right. This capability was implemented
by means of a two case conditional within get-basic-buses-from-port-output-
unit. The function is included in Appendix B. Redesign of the circuit in Figure 27
with the changes discussed in this section results in the circuit shown in Figure 28.
Notice that pads can now enter the data- path through either the left or right sides.
Much area is wasted in both circuits. The mechanism which determines the final
chip size depends on pad placement and not on the changes introduced by the new

version of get-basic-buses-from-port-output-unit.

B. PAD ROUTING

There are three parts to the new pad routing process: pad-placement, net ex-
traction and net layout. The procedures exploit changes in the data-path routines
that allow signals to enter through either the left or right sides. These changes are
discussed in Chapter IV.A. Pads may be placed on two, three or all four sides. The
number of sides ultimately used is determined by a chip area optimizing algorithm.
Every effort is made to accommodate all pads into the space available. If the pads
require more space than is available, the longest side of the chip is extended until
all pads fit. By extending the longest side, the total increase in area is minimized.
Finally, polysilicon and via usage has been drastically reduced by proper placement
of the ground and power pads and by an efficient track allocation algorithm.

The pad routing functions are in the file frame.l. Tﬁey are invoked by a call
to layout-pins in layout-object. Layout-pins produces the layout information
that results in the pad ring shown in Figure 29. As in MacPitts, the final version
of pins-layout is obtained by running layout-pins twice. This is necessary because

the pad routing channel width requirements cannot be calculated until some idea of

58

« 0T

Y RN S s

-
»

A 1 o A TR W et T AR e A N NN A IR
AN TR R AT ASAC S SAIMNASH LN N AP ™ AN WO IR NN, PN

—

11|

H [
il : L

..

3

Figure 28: Opening data-path on the left and right sides.

59

9 - » »))) Y LR Y P ¢
o L B T L A g I e S A G SO o

-y

Al

IXXAP GRS ST S N I PG o [A

8. I

R R A N R T VT I O YU T AT R SR IR W W W W Wiy Wy MSEFRAN AR L AN KW R e LW W LUNY W Ve VINRYR N

-\ x?‘-{-'.

the pad positions is available. During the first run through layout-pins, widths of

0 are used. The results from the first run are used by get-ring-width to calculate p
exact width requirements for the routing channels. These four values, representing

the channels widths of the top, right, bottom and left routing regions, are stored in . :",
ring-width. E
Once pins-layout is produced, the net-extraction processes begins. The algo- Y
rithm uses net information contained in internal-layout and pins-layout to build et

two net-lists. The first list, left-ring-nets includes all nets that enter the internal .
circuit through the left side. The second net-list, right-ring-nets corresponds to all '
nets that enter the circuit through the right side. ::
The final phase performs the actual routing process. It too is divided into left :E:
and right sides. The left side uses left-ring-nets as an argument, while the right side ‘E
uses right-ring-nets. Each side is further divided into turee problems: routing from ': ‘
pads on the bottom, routing from pads on the side, and routing from pads on top. :-
The routing process is initiated by a call to moat. :
1. Pad Placement ::
The new pad placement strategy differs from the original MacPitts’ methods ' ¢

in two significant ways. First, it finds the order of net terminals in top-paert and wing- .
span and builds a pad terminal list in the same order. Not only does this result in a :,
reduction of the average distance between net terminals, it also simplifies the final ,(
routing. As discussed in Chapter 3, MacPitts builds the pad lists directly from the A
source file. It has no built-in optimization capability. Second, pads may be placed .::
on two, three or four sides. The criterion for this decision is chip area reduction. i-l
In contrast, desigr.s by MacPitts always use three sides for pad placement. 2
The pad placement process is initiated by a call to arrange-pins from Ej
layout-pins. Arrange-pins is responsible for selecting the sides that pads are E"
to be placed in. It does this by means of a three case conditional. The first option '.:

'

60 &

‘"
.

]

N

N

T A N I NN A AT T AT AR NN T 's""-"'\ TR s A G A Y St TN

B R R R R T O T A T I RO PO O AN PO RO M W LML N WV L™ P u Wl W WL LW LW U LIRS RN RN ? 8 . !

N
=

Iniu] ‘ ‘ .

y

[

My
f
| &

o
-

-

PRI R)
2,08, 5

o

L. 2]
Y

ARy

Figure 29: MacPitts’ pad ring.

61 ,

. . ey . VR ST I R AN R WU UL A P TR TE LPREPL e
O AT T G T T e e W e Rt A AT DN g DT X IR 0 G Tl o T T AR e

i%]
MR I N

considers if all pins can fit along the top and bottom sides. If not, the possibility

of using top, bottom and either the right or left side is tested. If this strategy is
inadequate, all four sides are used.

Notice that, regardless of the placement approach, the top and bottom sides
will always contain pads. There are two reasons why these two sides are “common
denominators” in the pad placement schemes. First, as Figure 30 illustrates, the
skeleton ground rail is only exposed to pads along the top boundary. This config-
uration provides strong justification for placing the ground pad on the top. Since
it is advisable to maintain ground and power pads distant from each other to avoid
latch up problems, the power pad is best placed in the bottom. Once a side is
extended to provide space for one pad, placing more pads on that same side results
in no additional area requirements.

A second reason for having the top and bottom sides as common denominators
is that the top and bottom sides are usually longer than the right and bottom sides.
Circuit growth in the horizontal direction is a function of processing complexity.

Vertical growth, on the other hand, is a function of word length.

Arrange-pins yields a list named pin-net of the following form:

(4 ((((1 (signal input (reset))) (2 (on)) (3 (phia)) (4 (phib))) left)
(((1 (phic)) (2 (ground))) top)

(((1 (port input (a 1))) (2 (port output (c 1))) (3 (port input (a 0)))
(4 (port output (c 0)))) right)

(((1 (power))) bottom}))

The first element of the list indicates the number of sides selected for pad
placement and can be 2, 3, or 4. It must be followed by the same number of lists.
Each list contains a list of pads and terminates with the side where the pads in that
list are to be placed. Each pad is assigned a number. The product of this number

and the pad width provides the pad position (x-coordinate when placing pads on

top or bottom, y-coordinate otherwise). In this example, the leading 4 indicates

62

N R R LA R Y N

)) L m M M o X i AN

N TR R Y,) o) A L Y
.:.'. n.».. " A, *

Ae

‘;'r. "'

&

-

PSRRI I PR

SN

® e F AR
AT

N ra

R R TR T e TG VR T T AR RN RN W AR R R A R AT RO RS VU U UV YUV UN U US LW VN UNY o 9%s B's Bbe &%e &Y FYNREYXNIY

GROUND ‘
’ — POWER L

)

m

—

GROUND . —]

e

2

(% I
of o £

-

Figure 30: MacPitts’ power and ground frame

Yo

A,

® (A% YNSD

-3

[o 4
-

63

i { " » PR N R A AT L L LT WA AT I A NN, "-'_ﬁ',gl‘.!"f".r_-.".nr' .'\-‘ V~ . \d' "
Wttt :‘_-c.'.'f'o‘..- LSO m. ""(“"' s i W W “.l.'. R A iy Yy S Y R Y e W P e

5oyt g R E RN AR IR o gva §F g &%, %e 3Va Ata Ve Ata ala*8Y. 22l ¥l ta¥ "ok LR UL N (WK - - 'S ata aty 3¢

that the enclosed pad list consists of four lists. Each of these lists contains a list of
pads and a side attribute. This attribute can take either top, left, bottom or right .
as a value. As their names suggest, attributes indicate the side where that list of
pads is to be placed. Figure 31 illustrates the placement that results from the list o7
. in this example.

Arrange-pins operates on pins, sorted-pins, eztended-right and eztended-
top. Pins is extracted from the circuit source file. It consists of a pad name and a
pad number. Pad numbers are assigned by the user in the source file. Pins is the
N only list that MacPitts uses to construct the pad layout. It provides no information b,

with which to make intelligent placement decisions. The pins list that corresponds

R to the previous example may take the following form: ¢
. :
i ¥y
4 (((ground) 1) ((phia) 2) ((phib) 3) ((phic) 4) ((on) 5) ((signal input (reset)) a
6) 4
)
4 ((port input (a 0)) 7) ((port output (a 0)) 8) ((port input (a 1)) 9) ((port
M output (¢ 1)) 10) ((power) 11)) 3
" -
The list Sorted-pins provides information that results in more effective pad
1 J
& placement. The list is created by extract-internal-nets operating on top-part - q
i
A !
R and wing-layout. Top-part contains the exact position of those terminals in data- !
path that connect to pads. Wing-layout contains similar information with respect
2 '
by to terminals in the (~ntroller. Sorted-pins is made up of two lists. The first list by
identifies all internal terminals that connect through the left side. This includes ;
all points in top-part with the attributes ‘ring’ and ‘left’, and every point in wing-
i layout. The second list contains all top-part points that have attributes ‘ring’ and :_
iy o
:' ‘right’. The attribute ‘ring’ is used to identify all points that participate in the :
{
) pad routing process. The ‘left’ attribute indicates that the point is located on the
4) .
-, left edge of data-path. The ‘right’ attribute indicates that the point is located on ..‘
5 the right edge of data-path. These two lists are then sorted from the smallest to S,
B '
-y '..
; 64 !
P :
! .
R
v
‘ o
’ ~ - 3 YY) CY S LR A B ' (P ™ 'I'.i \ P ‘*’-V""'
Mttt et inta e T T Tt L R e S 0 i 0 s Rt S T T AR L W i T ST LRGN,

' :
s
Figure 31: Placing pads on four sides.
65
PN
. . P N - - g - . o) - " pran ~p N ‘-----v.'vv
SAGHE NGNS SR L Y N QRN .‘vm HCORTARAS " ARG (™ oty

[R L . ¥ gt gl xt.oat AV, aluh a’at P R T T T O O U T U T W A TR R WA S YO O OO T OO K]
5 s « {

the greatest y-coordinate. This service is provided by sort-by-y. Arrange-pins vy

dismantles the list sorted-pins into two lists. The first list is assigned the name left.

The second is given the name right. The sorted-pins list corresponding to the left :::('
side of the example above is: R
o)

(((zeset) (on)) 3

§

The list corresponding to the right side is: ‘:'
((input (a 1)) (output (c 1)) (input (a 0)) (output (c 0)))) '?:::

As the example shows, sorted-pins and pins are two very different lists. First, 2
sorted-pins is missing a number of pads. In fact, ground, power, phia, phib and phic ::}:'
are never present in sorted-pins. These pads are treated differently because, when E:E
routing is concerned, they do not interact with the internal circuit as other pads N
do. Ground and power connect to the skeleton, not the circuit body. The clock ':Eg
signals: phia, phib and phic, are unique in that, for any circuit, they may connect s;:‘,
to either the right, and/or left sides. This provides some latitude in making the J ;g
final pad lists. When on the left side, clock pads are always located between the ’|v'
wing-layout and top-part terminals. On the right side, they are always the bottom
three terminals. Of the three, phia is always on the bottom, phib in the center and R
phic on top. Clock pads are appended one at a time to the shorter of the two lists ; ‘:
in sorted-pins. Since the list lengths are revaluated after each insertion, all three f\

pads need not always be connected to the same side.

X2\

Pins and sorted-pins also differ in the structure of their list elements. A

o
net referred to as (input (a 0)) in sorted-pins is called (port input (a 0)) in pins. -;:
The difference is that the elements in sorted-pins are net names. The elements in :'
pins are pin names. Pin names not only identify signals names, they also identify | "E
the type of pad. In the example, the net name is (input (a 0)). The pad type is g ‘
port input. Some other pad types include: tri-state, port output and i/o4. This %

66

"

’

: W : w0
. Wy N R’ [T R T RS L .J'. - --.r-‘wv --.'- [] W ‘-{..f L o LS, \f- -]
‘!‘l‘!‘)".‘\'!‘\‘ .‘_1’?'\‘.’: IO X A L i oj.. J" " c.nl W ‘. *. WAL AGIAY N P SV AT RN B PN T, Vo 3, A M

-y TESY” A V.Y
V hl. .ttty .h‘.'u.‘s‘.’\'.h‘.‘l‘.‘n ..n. H [N, > o ‘" LA 4

difference drives the requirement for pins in arrange-pins. Once the pin layout

lists are formed in arrange-pins, order-pins is called to transform each partial
pin name into the complete pad name. Order-pins finds each element of the layout
list in pins and imports the missing name parts.

When all pads can fit into the top and bottom sides pad-on-two-sides is
called. This function uses four arguments: left, right, a list consisting of the clock
pads, and the difference in the number of elements between left and right, to build
a pad list that results in the placement of all pads on the top and bottom sides. It
attempts to balance the number of pads in left and right by transferring clock pads
to the shortest of the two. Finally, it appends the power pad to left, and appends
ground to the right. Left is placed along the bottom, and right is placed along the
top. Figure 32 illustrates the pad layout for this configuration.

When three sides are required to accommodate all pads pad-on-three-sides
is called. This function uses left, right and the clock pads to build a pad list that
results in the placement of all pads on the top, bottom, and either the left or right
sides. The clock pads are appended to the shorter list between left and right. When
there are more pads in right than in left, the pads in left are placed along the bottom.
Any remaining pads are placed on top. Pads in right are placed along the top and

- right sides. Any remaining pads in right are then placed along the bottom.

Placement of pads on all four sides is directed by pads-on-four-sides. As in
all previous cases, clock pads are affixed to the shorter list between left and right.
power is the first pad in left, and ground is the first pad in right. The algorithm
starts with the left list. It assumes that the best solution is one that ensures that
the left side is completely used. It does this by finding the difference between the
number of pads that fit on the left side and the number of pads in left. If the
difference is one or less, it positions power on the left corner of the bottom side.

and all others on the left side. Otherwise, it divides the difference by two, and places

67

s e,

L S R SRR O S SVl g
2 ’ .

3

FRLES o T L N
S R L,
Lt r PO

e
~

‘em . ta® . O ' v ga? at » Jot 3 gt ba’ 0nala” a2 s ¥
m ahea e a ke 2R T8 ath ats a3 VR aU3 afp At ataa¥é ot ats gip gd T o S T W WU WU U WU WU WO WL O U YU WU AWMU WUWU W » a° 8, 2

W

Td
o1
]
[\])
M
[/}
[}
[}
0i
.

A

' ’ .

: T ‘:“

- l'.:

ot P

& .
‘ '

; t‘:Q

::,a

' ’ %

4] ‘ %

S

-

=T T e el Gl Glig =t

|
<5

Figure 32: A circuit with pads on two sides.

.
s
Iy

..“'

68

¥ ELPEE T

7

'1

-
- - - - - T T N TS R e b BB & (AT M LA ' S W II“\'*")'\‘Y“\i"
WA l’-.' W AR ‘ u s igdie '.""" KW "(‘ R\ R - N POt o Loy Py it o S

i . . . vt aa 3 R At 8D A N S dav Satote’ A"
WO N R AL A R R R R R R P R o N AN U PR U U A TR YN UK g 1] hat b ¥ go¢) W Y4

%

»
this number of pads on the bottom, fills up the left side, and places the remainder %
on top. Pads in right are placed in a similar fashion. If the difference between the r’.“
number of pads that fit on the right side and the number of pads in right is one or o
less, the ground pad is placed at the right corner of the top side. Otherwise. the E:
difference is divided by two, and that number of pads, starting with ground. are '::i
placed on top, then the right side is filled, and finally, any excess is placed along 2
the bottom. Figure 31 illustrates a circuit with pads on all four sides. 0
In all pad placement schemes, ground is the first pad placed when routing
right. It is always located on top. It serves as a boundary; pads to the left of £
ground connect to the left side of the circuit, while those to the right of ground “:
attach to the right side of the circuit. In a similar fashion, power is the first pad Eiz’
placed when routing left. It is always on the bottom. It also serves as a boundary. "
To its right, all pads attach to the right side. To its left, pads connect to the left j .(
side of the circuit. This characteristic of the ground and power pads is exploited :Z
W

during net extraction. Placing ground and power pads in this fashion eliminates
all occurrences of nets crossing over the power/ground pad to skeleton connecting y

"
wire. It reduces the number of vias and the amount of polysilicon required. =

2. Pad Layout

-
o
-

Once pin-net is formed, pad layout is initiated by place-pins. The list pro-

)
duced by place-pins is named pins-layout. This list contains the information re- :'é
quired to produce pad layouts such as the one illustrated in Figure 33. Place-pins .::-‘
peels one list from pin-net at a time and transfers it to place-pinsl. Place-pinsl ..
extracts the side where pads in that list are placed, the pad name and the pad »
number and forwards it, one pad at a time to place-pin. Place-pin uses the pad R

name, pad number and side information to determine the type of pad. its exact

S

location, and its orientation.

LI s
L lq o,

69

g

N
L]
)
N

,

oy
a7 """&" Al R S SRt s A e o 'uw.-.‘-,.

-y o »7 L I PO
"»’\q'l‘n"."\.n. u.‘,i TN ‘ "" ‘- 3 S \‘ s \ \

O O U

i l‘s‘f ,'a'!'s‘!'n .\‘.‘;

4

AT

v,

%

S

a,

o
< s

= o 0 g]
A

X
A
8
3
-

£3

FTFLIW

IO

O

2

P S

o A
| Bl o g W L
o o g o

Figure 33:

Ld

) wy
'.'."")
o a0 M o)

B _-‘- [" LV \-.‘.- Y a" -
7. PNV PL PN,

Pins-layout

0

L 4
-

P 'i; ﬁ:“:. ;'{";./' ‘:(.'. '-“

l.%‘(

.
® TS

ol ey

*\

it

.t - Ll

""'*-" N).'-. e

- . e, \d . N d 1 o8
. N - - . . o -, p d b d d o d LS}
B 0,3 Sp9 %y Wad ol wal $a8 €k Vol faf al Sl 00l $ad Uud Yl day dad $o8 Uk s, b Vol @ 8, TR Ll - Ll 4 A 4 .

P,
b
:.
Place-pin calls on layout-pad to identify the pad type from among the "'
)
following list: B!
power ground phia 5
phib phic output4 ®
output8 input tri-stated .
tri-state8 i/o4 i/o8 , ':.
Once the pad type is determined, layout-pad calls on the appropriate func- ::f
RN
tion that returns a list specifying the actual pad layout. These functions are defined -
oag
in the file pads.l. The following call results in the description of the pad in Figure 5’5'
34: ,).\
: : £
(layout-pad20b-input-pad power (input-pad- name pad) ®
(input-pad-in-wire pad) side) v
(%
&
]
The function layout-pad20b-input-pad specifies the type of pad. In this N
case an input pad of type pad20b. A second type of pad class is rinout. A call to E,-
O
)
this type takes the form layout-rinout-input-pad. . ::
n "
Layout-pad calls on the input-pad-name to label the pad with the name .:
specified by the parameter pad, and input-pad-in-wire to label the point on the
pad where the internal circuit must connect to. The parameter power is the width Y .
required by the pad-layout ground and power ring. N
To position the pad within pins-layout, place-pin uses provides the pin num- 9
<y
ber and side to the L3 function move. Move takes three arguments: item. x- N
~
distance and y-distance. To place a pin on the right side, place-pin calls: :5
[)
(move (rotccw (layout-pad pin power 'right)) B!
right :}:
(* (pad-class-width) (1- pin-number))) -::::
)
v, %
In this example the pad to be moved is brought in by layout-pad and rotated :
et
counterclockwise by the L5 function rotccw. The pad is moved in the x-direction by t:
K
the parameter right. This parameter is obtained by the function pins-dimensions 't-::'_
and is the sum of eztended-right, the width of the right ring channel and the span :'
vl
v
71 ,
.ﬂ
i .
n"\t
5,\.)

. o e m : L LA U . ;) WY 0 Tt A S S EAg AR R
*9»"2.“.-‘.‘?-’1.4"..1 .o".-.c".o, v AT 'S .. £ DO RN NI O W, PHERESE :

o

Pk P o T & o : i T R
L C e i sy ~fﬂ|lhﬂ|l\|| N..f o AL v‘ o T !'.-)fu.nw-h.?.\ Pl ara mtf!.f..\.u O EEX L, s..»%\-‘s.vu

; RN,

3

t-pad

xS PR A e S R o <AWW¥6'M£’§5§

U U U

X A SRR TS

Figure 34: Results from layout-pad20b-inpu

5% il .,.,;,,-E..,i...i.\.g 7R R
Wv ﬁnrvww m”ﬁ Q«mm%w Arr?f-wwmﬁwufww.nn%\ e

TR

X Ay

across the large power and ground rails that surround the internal layout. The pad

is moved in the y-direction by the product of pad-class-width and pin-number—1.
Pad-class-width has no arguments. It returns the width that corresponds to the
pad type in question. For the pad20b class, this parameter is 128A. It is 100A for
the rinout class.

3. Net Extraction

The purpose of the net extraction process is to build net-lists. A net-list
specifies all terminal locations of a net. In the pad routing process, net extraction
must identify r.et terminal locations in internal-layout and pins-layout.

The net extraction functions in the Monterey Silicon Compiler exploit design
characteristics, inherent to the Monterey silicon compiler, to simplify the algo-
rithms. First, since the pads are ordered in the order that nets appear inside the
circuit, once the first is found on both lists, the other nets fall out automatically.
Second, pads that connect to the left side of the circuit are always left of the ground
and power pads. Pads that connect to the right side of the circuit are always to the
right of the power and ground pads.

The net extraction process described here performs well when confronted with
two terminal nets. It is not equipped to handle nets with three or more terminals.
Multi-terminal nets occur when more than one tri-state pad is used in a circuit.
The control signal used to change the impedance state of tri-state pads usually
form a multi-terminal net. The Monterey pad router does not currently have this
capability.

Two net-lists are formed during net extraction. The first, given the name
left-ring-nets, consists of nets that connect to the left side of the circuit. Right-ring-
nets includes all nets that connect to the right side of the circuit. Since they are

formed by almost identical processes, only left-ring-nets is discussed here.

73

»
A

- v -~ » [&S R .YV --‘vq-‘) F‘ﬂ',l"h‘~-" I T IR I TRy B - "
Aowhy, ..l'n,n‘.fl'._v\ l!‘ o.l‘l?l‘u’l VAt 0T - DL POl A D n- ALY ", \.) " Sy U L K W OR LRt R, ety

-

LA

X,

N

2NN

PP o

A SIS

Jala

(= O F & = > il LAY

T

x

-

o

a

Left-ring-nets is a list of two lists. The first list contains the y-coordinates of
all the internal terminal points. This list is obtained by means of the functions sort-
y and get-left-netsl in much the same way that was described in the extraction
process that led to pad placement. Essentially, all those points in internal-layout
with both the ‘left’ and ‘ring’ attributes are extracted, then sorted by increasing
order of their y-coordinates.

The second list contains coordinates for terminal points at the pads. The
values in this list are interpreted as follows:

1. If value < 0, then the point is on the bottom side, and abs(value) = :
coordinate.

2. If value > extended-top, then the point is on the top side, and
value — extended-top = x-coordinate.

. If 0 < value < extended-top, then the point is on either the left or right side
and value = y-coordinate.

These values are obtained by applying prep-pad-bank to pins-layout. Since

the order of pads in pins-layout is derived from the order of terminals in internal-

AT G

layout, the first element in the first list connects to the first element in the second,
the second element in the first list corresponds to the second element of the second

list, and so on. A circuit with eztended-top = 100, and pads on the bottom, left

™
-
O
S~
o
i,
>

and top that connect to the left side, could have the following left-pad-bank:

P |

((10 20 30 50 70) (-40 20 40 70 130))

Py

Prep-pad-bank serves three functions. First, it finds the x-coordinates for
both the ground and power pads. Second. it divides pins-layout into two lists.
Pads to the left of the power and ground pads are packaged in a list and passed to
left-pad-bank. Pads to the right of the power and ground pads are passed on to
right-pad-bank. Both functions represent each pad into a single number. This

number is sufficient to locate the pad terminal. The terminal numbers are assigned

as follows:

S AT A A _‘--’.‘-,._1 "= ‘h\ " .'}._}\- a0 et e \'- ..n, -,, \.J.A.',‘ .,\,.'_\‘ N';,’\' Vet \‘F‘v] ‘C}'\
Aol al N Wy u v N

SO

D

vty

-~y PR R R SR R I PR N I I S G o
o e oM Wi o L A iy ahaint, T R0 508

—

. If the pad is placed on the right or left side, net,q, =y-coordinate,, .

[3%)

. If the pad is placed on top, nety.q, =eztended-top+x-coordinatep,q,.

W

. If the pad is placed on the bottom, net,,s = 0—x-coordinate,,q .

4. Net Layout

The goal of the net layout process is the interconnection of the net-lists con-
structed during net extraciion. Of course, this task must be performed within the
framework of the design rules. The proposed net layout method is customized to
the Monterey Silicon Compiler target architecture. It combines routing strategies
found in the moat and river router. These routers were discussed in Chapter I1.B.4
and II.B.5. The Monterey Silicon Compiler pad router is designed to mininize
polysilicon and via utilization in the routing channels. It does not guarantee the
smallest possible channel width. The pad router is a river router with a river bed
in the shape of a rectangular ring. The routing area is made up of four rectangular
channels and the four square areas at the corners. The rectangular areas are located
between the outer skeleton ground and power rails, and the interior boundary of
the pad ground ring. Figure 35 illustrates the pad routing area.

The differentiation between nets that connect to the left side of the circuit,
and nets that connect to the right side is also observed by the net layout functions.
The pad routing process is initiated by a call to moat. Moat has three arguments:
left-ring-nets, right-ring-nets and ring-width. Ring-width is a list of four numbers.
These numbers represent the ring channel widths for the top, right, bottom and left
sides. The pad router functions use the macros top-width, right-width, bottom-
width and left-width to access the desired value from ring-width. Moat has only
one function, to direct the appropriate net-list to route-left-bottom ..nd route-
right-bottom. Since route-left-bottom and route-right-bottom perform their

functions in the same way, this discussion will be limited to the left instance only.

. e - et T
SRS I~
e e N

A AN L

an T

o

g

Gh%

s

5

-

(IO

S

}% o h

-,

>
Pl

Ad
0

4

<

e 4 i
PR r e ® SN

\-'.l

510

.{

.
)

SO TN
Nt

P Ay

PR LM

e

ss'..;' @

1@ €4,

’
Y

-

" ..\.._‘- \‘..\r_..“\-‘.\-‘ .

N

-

PR
s :

PO o e

~

N
.

-

A 4

. . . . PR T AN AR W RN 3020 G Rl R (WM
R TR N X w / YRR 0 N @, X * ! " - WY . V. ! -

top channel

; left channel right channel

LT
A
| &

voly-cuttt
x
»

¥
[1%0Y, “cuna
" ‘my-m tr—
[4
o ol g 4
e I 4
r

,_

LS

1
i

.
[

n
v
Vo

T
.

x,

layowt -skaleton -
"ot "o
X

bottom channel

s

b JA

o
«

P ‘(. Y

nl. PSS

Figure 35: Pad routing area

D

PP g

NS

*

»
P

~1

=)
e
'HL"'

N,
f
¢
A
"
A\ '
LY
]
.-‘I
..
1"
s T A Tt - ---- TR RV A RSN R R %"
. ‘ g L s - VAV o s Y (L AN IO A A s O
.l|-\ ‘l'l.-‘J.a‘t ".'l‘.‘. AOANIACIAAAAR b TG N 0y W '~ R % . B N R i

U UL WU YO 99 ya® g * Sat Lot 1o dg" P fat §ab fat ; 2B B ¥ By $5°,05% 02", 00" Ha® ba” 42 4" & 120 et Bt Ba¥ B2t B0 Bl a0 SaS hat G

The most complex type of pad routing problem that the Monterey compiler
can be presented is shown in Figure 36.a. The routing area for this instance of left-
ring-nets consists of the left portions of the bottom and top rectangular channels.

the entire left channel, and the corner areas at each end of the left channel. The

important parameters in this routing problem are the net-lists and the edges of
the top and bottom boundaries of the left routing channel occurring at y = 0 and
y =extended-top. The net-list is important because it identifies the terminals that
need to be routed. The edges of the left channel are important because they identify
the ring corners.

During the discussion of routers in Chapter II, it was determined that the
moat router is nothing more than a modified channel router. Since the net-lists are

sorted, i.e., the th element of the terminals on the left side belongs to the same

net as the ¢th element of the terminals on the right side, this routing problem can

.
[y
»

be solved with river routing techniques. The only issues to resolve are the track

bl ol

allocation problem and routing around the ring corners. These problems are solved

simultaneously by the layout routines. "‘

Tracks must be allocated not only to minimize the occurrence of vias and }:‘.

polysilicon but to prevent shorts caused by overlapping different nets. The track NN

allocation method used is essentially that used by the MacPitt’s river router and o

discussed in Chapter III.B. A differentiation is made between nets that are routed ?:N,

up-river (the y-coordinate of the internal terminal is greater than the y-coordinate of l’; +

the pad terminal), nets routed down-river (the y-coordinate of the internal terminal —:'

is less than the y-coordinate of the pad terminal), and nets routed across river iy-

coordinate of both terminals are equal). Picturing the routing area as divided into B

- a number of concentric tracks, for each consecutive net routed up-river the assigned ',_
track is incremented by one. That is, the first net routed up- river is assigned to E:-.)‘

\

track 1, the second to track 2, and so on. When either a down-river or across river :i\

%

77 o

R

o

.i"

P A L AN A A o 20T A ._,'. A S T S T A e g e Y SN polnb

et et s et - 6 0n" Sa¥ 82* U2 e’ Ba® $a' 81 g0’ b
* LAY (TN v, 60, &% 0% 8% $3a 8'2 $%2 0°a.4"g V" < o 84 BY LT YN T YU TOM WO WO YOR MU AN SO AN O AN \J '.
R WL LN > L d

B R e

’
Y
~E

o
\ Figure 36: Sample routing problem: (a) routing by Monterey silicon compiler, (b) 2
errors caused by change in routing direction

TR

a gl

=
CIRCUIT

\
/
3
(
=

CIRCUIT

(a)

78

: ‘ : R . . . " - o - - RN
e e ek e K T R T A A o T RUR W T T T e O T T g e T
SRS A f'('F' "f o SN n. .l ' ‘ l-"‘ & HE Y .c'. ™ -"'- -- ot “ hidiadd e i

TR N R A ST T T W o0 R i L M M U WL U WU W WO T R VAR U O N O DR CI NN T VY v I UN ¥ O o T O O O I O Y U T YU VUWTY

situation occurs, the track counter is reset to one. The same method is used to \
assign tracks to consecutive nets routed down-river. In this instance, however, it N
1s an up-river or across river net that resets the track counter to one. Every time ‘
an across river situation occurs the track counter is reset. Once a net is assigned a f
channel it remains in that channel until it reaches its destination. ::é
- Tracks must be allocated to prevent interference when routing subsequent %
nets. The algorithm routes the lowest net first, using route-left-bottom. After all) ‘
nets with pad terminals on the bottom are routed, what remains of left-ring-nets is ..
passed to route-left-side. Route-left-bottom recognizes pad terminals from the 54
bottom side because their net values are less than zero. Finally, if any nets exist 33‘
with net coordinates greater than ezrtended-top, they are passed to route-left-top ':;\
for routing. i
If the track allocation method were used as described above, all consecutive 4
down-river nets would interfere with each other. This is illustrated in Figure 36.b. "

This problem is avoided by reversing the track number order between up-river l
and down-river nets. For up-river nets track assignment starts with the innermost ";
net and grows outward. For down-river nets track assignment originates with the E
outermost track and proceeds inward. With this modification, the track allocation
method described in the previous paragraph yields the channel of Figure 36.a. "'
The track that a net is to occupy is determined by the parameter track. F
When routing nets with pads on the bottom, route-left-bottom increments this E
parameter by one for each net it routes. This simplification is possible because E
pads on the bottom always route up-river. In a similar fashion, nets routed by E
route-left-top always route down-river. ;.:‘
When routing nets with pads on the sides any of the three routing directions ;:

X

may occur. The direction in which the last net was routed is preserved by means E‘-,
of flag. This parameter may take one of three values: ‘down’, ‘up’, or ‘straight’. :'C
79]

Y

’

X

. ' -, . L T T T e L T O D N '\"'"\..‘
AOAG O i B O R S Y S L S LD i Wy AL R SR T i S RS A e 1 S SN
RGO O ™ M o ey " e e e : Pl " Gt o0y v L Oy = ;

. a » . s A g at ' v 8 020 a0 BV B0 Ga¥ IR X1
RIS PR W WU WO WU WG WU NU WO WU o g0 ot 0a' 2% st 04" (¥ 9gt Hat he? (TANRR SR T [Y h Y Y

-t
o N

-~

Route-left-side determines whether to update or reset the track counter by ob-

serving the state of flag, and by the routing direction of the current net being routed.

s e e

The possible outcomes are: !
. o If current net is straight THEN track =1 Co
§ t
R o If current net is down-river THEN T
K ~ If flag = straight or flag = up THEN track =1 b,
o &
N
,;: ~ If flag = down THEN track = track + 1 y

o If current net is up-river THEN

-

~ If flag = straight or flag = down THEN track =1 :

- -
-

e
"~

~ If flag = up THEN track = track + 1

:
p Routing around the corners is very simple. The algorithms treat corners as
[e
\ simple extensions of the regular rectangular routing areas. As Figure 37 shows, the T
'
" net must penetrate into the corner until it reaches the square’s diagonal that best v
‘ﬁ
¥
:: aligns with a radial extending from the center of the circuit. In the corner shown in
: Figure 37, the left bottom corner is simulated by setting the reference point (0, 0) N
- at the top-right corner of the square. The values for both z-min and y-min are A
® ¢
b both the negative of the product between the track occupied by the net and the '
) d
be track width. The track width is the sum of the technology dependent parameters A
space and width. The track number is the parameter track. The z-maz and y-maz By
parameters needed to establish the wire dimensions can be obtained from z-min,
. y-min, width and the net terminal coordinates. \
H
; -3
o :
i ¢
l. |‘
) i
4
) \
. 80
’ [t
))
* U
' I
OO U KR ORI s s AJO XN ﬂA. A 2R N I x "'.." ‘.‘ '.. '-'l" . ."";"'- ‘ SN ..' e o AR 0,0"

N . e A" . « CICTLIY TRV vgro) - gt <y Y
RTINS A YU s, Oy ade §* weg g0 YR y & g0 @ 8 ga¥ ot By FPETEOD IO PRIV Sy A * P

T x v 0
Frrdse
0%

—P <
-~

CIRCUIT

¥
(0,0) i

space

ol

i ., width °

(x-min, y-min) w)

5o

b
~e

23
olnl

<.

*xr

Figure 37: Routing the corners

-,

¢
A

h Y

X
por

81 o~y

: p L _J‘r.r. Ry o
ot P AT AN L Co g ,l..'-. Rohatu ABSLIANGIAN AR "r“ 27 WA

B. SUMMARY

The pad router developed for the Monterey Silicon Compiler outperforms the
original MacPitts pad router in all respects. It requires less area, reduces wire
lengths and minimizes the usage of polysilicon and vias. These across-the-board
improvements are possible due drastic changes in the pad placement algorithms.

and the new capability to enter the circuit body through either the left or right

sides.

82

-\-'.'\""-' 57

PN A A

- LN I)
"' P4 - "-‘,v. o’ g "- ‘\--,,u .-1 .'p "1; "(N.v .-v - \;-. ‘?-..‘}.'l .'.' ..- ._4:‘- "d‘.'- L
.. AR 8 5 3 'y i Ll a2 X A o * o)

N X

Pt SL
-._r‘j't

-

- (-

- -
A Za YA
Pl S

N

- 5

» 2 -
£ rs{"

-

LRl Py O S Sl RN

. t > S AR I))
"“.-“‘4"‘,‘ ‘..l"‘. 'ﬂ"-‘ ;‘".0“.5 N> SRS t\"J!\‘. R SA SR .‘\‘&\‘kl‘. i

V. RESULTS

A. MONTEREY SILICON COMPILER ENVIRONMENT

The functions discussed in Ckapter [V and included in Appendix B were inserted
in the Monterey ISI workstation environment developed by J. Harmon [Ref. 19].
This environment allows MacPitts’ circuits to be viewed by MAGIC [Ref. 12].
Changes made by J. Harmon to organelles defined in data-path.l and organelles.l.
permit error free extraction of files for simulation. The errors were caused by design
rule incompatibilities between MacPitts and MAGIC.

To design environment is created by issuing the following commands on an ISI

workstation:
Macpitts loads MacPitts environment
include patches replaces MacPitts’ data-path.l, library
and organelles.] with versions created by
J. Harmon [Ref. 12] ‘
include buses adds functions that allow connections to

the right and left side of data-path

include pad-router adds pad placement, net extraction and
pad routing functions

macpitts file-name begins circuit compilation

B. RESULTS

The new pad router was tested on four circuits. Both the MacPitts and Mon-
terey version layouts are illustrated in Figures 38 - 45. Table 1 lists measurements
for a number of significant parameters. This particular set of circuits was selected

because of their wide range of sizes and internal structure. The source code used

83

P T

™ L LTe W e LT e R
Y * u.} &, . -
B N LR DA LA

o @S

NEIAERY. (e

PET
‘-,5’11(1‘.". r:.j\

TN

. M
‘.v‘~ ,

‘l

.y
PR

Pt xtad

IR PR NIl Y
X

Rl

)
to compile them is included in Appendix C. The first design, MEMORY, is a 2-bit "

' latch with over 200 transistors. It was used extensively during the software devel-
opment phase because of its small and simple design. TEST is a 3-bit incrementor
with over 500 transistors. MULTIP4 is a 1200 transistor 4-bit multiplier designed

by D. Carlson [Ref. 3]. Finally, TAXI was presented by Siskind, Southard and

Crouch [Ref. 2] in the original MacPitts paper. It is a 1500 transistor, 8-bit taxi) .:'
meter. 5
I,
: Both MacPitts and Monterey silicon compiler designs were produced for each g
; circuit. Testing consisted of ESIM [Ref. 12] and CRYSTAL [Ref. 12] simulations on e
both the MacPitts and Monterey versions of each circuit. ESIM is an event driven ':
switch level simulator. It was used to verify the logical integrity of the Monterey EE
designs. A successful test was one in which the results obtained from a Monterey ?
design matched the results of the MacPitts version exactly. CRYSTAL performs ‘
timing analysis by measuring critical path transmission delays. ‘
‘ ESIM results verified that the new pad router maintained the circuit’s logi- h
! cal integrity. Results from Monterey compiler circuits matched those obtained by 3
: MacPitts’ circuits exactly with one exception. ESIM had difficulty simulating both . E
the MacPitts and Monterey versions of TAXI when the circuit was fitted with tri- 3
, state pads. Each version produced different and incorrect results.
‘ Of the many parameters available for performance analysis, wire length. layer
E type, chip size, number of vias and critical path speed were selected because of their :
. direct relation with the issues which this thesis undertook to investigate; reduction |_
, of total chip area and increased chip speeds. Chip size has been widely used as a ’
;: measure of technology performance. J. Wyatt [Ref 20] demonstrated the contribu- s
tion that long wire lengths make to signal propagation delays. Table 2, obtained . A
« from [Ref. 1] shows that signal delays associated with polysilicon are 100 times the :
;: delays experienced with metall wires of equal length. Ny
“
84 3
Y :c.f‘
4
<

) . P TR IR T T e e N
A5, 000 SR b0, T R, Wi R, Y

"lf‘h v

,. i..\ "ul‘ » ... *p \,‘-" \..,'\"P-'\"‘-J_\J_‘-f \ f"‘.“.“.;ff" ‘ -.\ :'\

o

TABLE 1: STATISTICS FOR MACPITTS AND MONTEREY CHIP DESIGNS

CIRCUIT PARAMETER MACPITTS MONTEREY Menterex » 100
MEMORY
length (mm) 1.78 1.67 94
width (mm) 1.74 1.43 82
area (mm)? 3.10 2.39 7
no. vias 60 9 15
wire length (u) 17.4 x 10° 4.5 x 10° 26
polysilicon (u) 3.6 x 10° 1.1 x 10° 31
metall (u) 13.8 x 103 3.4 x 10° 25
critical path (ns) 258 147 57
TEST
length (mm) 2.57 2.04 79
width (mm) 1.83 1.86 102
area (mm)? 4.70 3.79 81
no. vias 65 10 15
wire length (1) 28.78 x 10®° 15.38 x 103 53
polysilicon (u) 9.95 x 10° 2.04 x 10° 20
metall (u) 18.83 x 10° 7.69 x 103 41
critical path (ns) 671 604 90
TAXI
length (mm) 4.07 3.49 86
width (mm) 2.72 2.81 103
area (mm)? 11.07 9.81 89
no. vias 117 15 13
wire length (u) 76.4 x 103 38.0 x 10° 50
polysilicon (u) 25.4 x 10° 13.2 x 10° 52
metall (u) 51.0 x 103 24.8 x 10° 49
"critical path (ns) 1998 1864 93
MULTIP4
length (mm) 5.19 4.70 91
width (mm) 2.40 2.42 101
area (mm)? 12.46 11.37 91
no. vias 104 16 15
wire length (u) 57.26 x 10° 42.13 x 103 74
polysilicon (u) 20.02 x 10° 2.73 x 103 14
metall () 37.24 x 10> 39.40 > 10° 106
critical path (ns) 3061 2266 74

")y s " " ? - kJ » LB ' (= " - bl
Rt AN S D Lt e i RN X '..-. Un Um0

TN EOS Y Lt

ok P ¢
X

A
E

I 1.1,

i,

- L S R
RSO

IR IE
00
f
|
=l
ME= i ||
ﬁE'H_' £
|
4

[

Q!

A A AT A
S W T, ‘ou ,

Figure 38: MEMORY circuit design by MacPitts

o A AL W N

S LA LY

e
0
W le i

86

RN AN

1' v,

o AT L™ P T
B S D TP RO T
o

'h h

2T e ot S R TN T

=

VTEIOREL

.< | @ AT

PRI

f®

| VR i 4
PRI RN 'r{'s

@

"
LN WY

PLTYOM YO TR UK FOC PN DT RNP, L W W 20 M N R WY v o7 W0 AT IO AT OV AT VLA

\
i
b
sk
! ——
= IR
1l E
: | : |
; =] :
D] i -
b i3
Ml 5
=i
.
| !
| |
] .
. .
| B
.
) Figure 39: MEMORY circuit design by Monterey
4,
\
)
i
4
1 87
!
¥
L
3
!
L

e o .
N W,

g LY
ey Ty s ity Sty VA T S S N A N P e ah s T

IR - O U R,
LS 8,510,040, Y LW, AACMOA

va e ¥l Atk A eeR el bk alE avE k8 aY} o Me” . o g ote ath’
K e e el " oy ‘i"'i' g g v e Bt 9, e ey €, 8" !‘- Vg8 a2 .00 o' g *q g™ (RN N WL \} N) il

e =
T
]
— EEEERERE WEae} 5
W 0 ! ’ ’ ¥
e SN EETEL ENH R (i
¥ d d
o v R TRTEIN | ' u
i L :
=24 |
- l :
f ; .
1§
l ¢
{
t
)
H — | o
"3 o S 3 b
= 4

£,71@ A

L.

.ﬁ

W

-‘Jl':.

Figure 40: TEST circuit design by MacPitts

oL

SRR

88

A L
E Fro ol

=3
-

g
~

%]

. - AN vy
. . " L W Y) ' s 30 AT A e ¥, A
ny i?n'.’t‘\.a'!.a".n'\‘.c"‘.o‘lgq'b..",Q.‘A.‘.s ‘.l“. ‘d“.‘ Wi Wiy L 08 ¢ L M M VA RN Jh‘.‘o’- LA A A \nan 5

b e P K a0 g s R D P 0 A g 96 nde n'E 4" i pt >4 a8 0 8.0%0 2'8 0" 5% a7 2"k - U TN P S PV UV YU T AT
[ARIT X

|
g &

[
[

Figure 41: TEST circuit design by Monterey

89

A I N A
OO I ORI A AN N NN A P R TN A A R K

o : [N . - 3% AR Pal ol val ub Soh wnb al Y20 daf val gl ok v
BRI ISEI WL WAL, YA Wy XS ool b B 8 Vel Taf Aak cabVah all gk ind o val Toh tal iah ¥, » ool

mm tBIN.2Y

TR

Figure 42: MULTIP4 circuit design by MacPitts

'.-f;.n. .

-
-

S

F

™

.

RO

Figure 43: MULTIP4 circuit design by Monterey

PR A

90

E-:*: -

-
-
-
-~

®
) - -

-
» -

‘.i.l.), B l.t.l. t,‘ C o ‘ ‘n "I ‘

A LA A TR A S A

by
'.

]
’
s

y " %, ' ()

PHl-
PHI
R
11
¥ v

]
o

i

|

! - J
A ik e
i o

1.5 PLHY.6! ﬂ;ﬂlﬁ[-
€

Ay 4

01
S

01
1]
ol
1}

Figure 44: TAXI circuit design by MacPitts

91

-
S

S 3

s
L

" " } L, » - - - “1
‘:".\"'e‘i‘a".':’..'n'!'u':‘u'!\".‘c".'A‘.'\\'.'.\.‘n‘._a'f‘u't‘n‘. OO M n‘..l‘!‘t‘.'o’.‘!‘. UndOR Ut M O A MR AR O O TP MU DO T KL KT S

§ ‘ s . all: - ipavy et . N Sa'd ateat c 0 th atatata a¥atataatal slal $at B2t 820 Bat¥
RN AN RN EART N AL ‘¢ g gt £, oy g u

01
0l
o
Ot
[\1}
D
[:]}
[M]

)}

Figure 45: TAXI circuit design by Monterey

~ N g . AN W L Ny NS a0 Y, » I o O
‘«‘;'.l..'\‘.'l‘.‘\‘x‘!‘t'ﬁ".\.n‘l!.'i‘.u'l.q K] ‘.l"!l“.\'.!l‘.‘.l".. &l“q AN aOalN o 5 Ul < (N y A z ALELENT, -A‘e‘l » A% 4% l.“'. K o B > R IR ‘, 'o‘l-"

- B - - - B . . B . . . B - b, ¥ \J + ¥

T T PO L T T TR O PO T SA TR TR TIOLTAR TUR TON T WU AU WL [T Sttt R0 aYE P a¥i ot aVE ad gid’avy oV a0R gV & l.tqg‘

- e
)

1. Area
The MacPitts pad router impacts on the final chip area in three ways:

1. Circuit extension in either the horizontal and, or vertical direction if any of the
three allowed pad placement sides cannot fit the number of pads indicated by
. number-pins-per-side. This is common in small circuits with limited placing

space. Thisis the mechanism that produces the large empty areas in MacPitts’
version of MEMORY.

[\V]

Since all nets must be routed through the left side, net congestion produces
wider routing channels. By necessity, the sum of tracks in the top and bottom
channels must equal the number of pads (except for ground and power).

3. Designs reserve space for pads on all four sides yet pads are placed on only

three. This is illustrated in Figure 43 where a distance wide enough to ac-
commodate pads is evident on the left side.

The Monterey pad router solves the problems listed above. As a result, 1t

will always produce smaller layouts than MacPitts. Specifically, the Monterey pad \

router will:

A
1. Place pads on 2, 3, or 4 sides to minimize area. If the number of pads do not >

fit around the circuit, the longest side is extended until they do. By extending ‘

the longest side, the total increase in area is minimized. ?’:‘{,

’ 1
2. Ability to enter data-path from both the left and right sides reduces net »

congestion on the left side and tends to reduce routing channel widths. fos

3. The exterior pad power ring is collapsed on sides without pads. This is demon- » v'.::

strated on the right and left sides of Figure 44. Y

J 0

e

These mechanisms interact to make all Monterey circuits smaller than their R

)

MacPitts counterparts. Best performance is obtained for small circuits, under the :::::

o0

influence of the first mechanism. For such circuits, area reductions of 20% - 25% ’.::':
are common. Larger circuits exhibit area reductions in the 10% - 15% range. These :

R

circuits tend to place all their pads on the bottom and top sides. The third area '~. '

L q‘

reduction mechanism is most significant here since both the left and right pad power 2; !

rings can be collapsed. : ¢
o

2. Wire Length it

‘e N

Wire length is a useful indicator to determine router effects on circuit speed. ‘-)

J. Wyatt [Ref. 20] describes the effect of interconnect on signal delays. The impact ‘..‘

x

o
{J

93 :':,:

« ":t

~

o

3

v

. \ p - w? , - (W Ty VY iy
3 1 . AR TR TR ST e Y o S e i e A T
?l‘:‘ O.l‘l.l.I. J«"h“h T .'t'!'! R 704 | o T Y At b, i ai) Ay o' * N NERLS "

Chg 28 LC AL

apoaila T U TO P O T T e arR e oy el N vy
AR AN PR RRAE R T AN LN W UNUNURLY (APLALY : 9. g9 PR LT YW FUK UK JOR PO WU \J X L L

LJ Voo ' §
METAL d,
ia — ¢k -

| POLY POLY POLY,[
4

— L POLY IE 8 8
A
G

4
NO ¢

. . . . Vi
Figure 46: MOS inverter circuit with fanout)

a1

»
e

-

» ‘ ,u’a."

TABLE 2: GUIDELINES FOR IG-
NORING RC WIRE DELAYS [Ref. 1: W
Table 4.7, pg. 136 K

Maximum he
Layer Length L
Metal 20,000
Silicide 2,000
Polysilicon 200
Diffusion 20\

94 -~

. .) " LN R P ! | b "y - Tt " A TN
R O ORI O AN D R L O R S Ve T, RALATA N N AP T AR AC RS T, v ah i aha% A

' . ~g¥afEr" § ORI\ R -
PRSPPI A I OB TAKR LI TRIK IR N M PN | LERN T A AN KRUR M AN : MM NN NN W] VN 4, o @Y, \ e gt LW L W%\ W\ A LA .(

-~

10

-

(e)

ol:]

S

|
C-
P

- &
via via vi’ﬁ

|
o o

AMPLITUDE . (VOLTS)
o
(3,
0

02F

BF = t-» T

-

00 v - 4

L Y X X

00 Q5 7o) 1S 20
TIME, NANOSECONDS
L*100 MICRONS

oy

it

-
e x .

OO

AMPLITUDE (VOLTS)
TR LA ﬁlj. -9

A 1
(010 10 20 30
TIME, NANOSECONDS

R R A

2

Figure 47: Bounds for the step response of the circuit in Figure 46. (a) L =0, (b)
L = 1004 [Ref. 20: Fig. 11.2.24]

95 .‘I

3 AT R L P L A '«-w'w-vv')r_.""',"j-" ((d'ff'
..... AN ‘c&'.‘d. “l ML N LN, 0‘ 0'- N \"T\‘i '\"" ,J' ’ 'J‘O» L X 4 NP ~\ >

B)

T TER TSR TR U AL B LR U WU NG LU YUY MU NG YL UL WL

L=t MILLIMETER

10
(c)
Qsp

AMPLITUDE (VOLTS)
&

-------7

—_—————
I Y%
-] .i
ozt J
)) 20 30 20

TIME, NANOSECONDS

L= CENTIMETER

AMPLITUDE (VOLTS)

1

SO0 - 1000 ISC0 2000
TIME, NANOSECONDS

Figure 48: Bounds for the step response of the circuit in Figure 46. (a) L = lmm,

(b) L = 1cm [Ref. 20: Fig. 11.2.24]

96

. AP -
e S e VR R R T AR M e SN

TLLISTS

PO IR

£

o

Radiars IR ol g

et €a’ 582”272 0 21 a6 &%

of varying lengths of polysilicon on the circuit of Figure 46 is shown in Figures 47

and 48. Table 2 shows guidelines for ignoring RC wire delays. ’

In this analysis, total wire length is the sum of all wires required to connect

every net from their pads to their connection points in the data-path. controller or

clocks. Thus, wires deep inside data-path may be considered in this measurement.

This is necessary because even though these wires are not produced by the pad

router, their lengths are definitely infiuenced by the modified pad placement and

routing package. For example, the wire from pad C.2 in Figure 41 must connect)y

L atph R

to a point on the right edge of data-path. In MacPitts, this net is first routed

around the circuit body to the left edge of data-path. From here, a long polysilicon

wire is produced by the bus mechanism in data-path to make the final connection)

to the terminal near the right edge of data-path. A similar situation occurs with

net RES.3 in Figure 43. The pad is approximately 0.3mm from its terminal inside)

-

data-path. MacPitts requires over 9mm, half of that in polysilicon. to complete the

.

- a

connection.

As the values in Table 2 suggest, the layer used in routing is as important.

- -

if not more so, than wire length. To assist with the analysis, total wire lengths in

polysilicon and metall were obtained.

The Monterey compiler outperformed MacPitts in all circuits, ranging from

) a 6% improvement in TAXI, to a 43% improvement in MEMORY. Time delay B

reductions were most pronounced in those circuits with connection points at the far N

right of data-path. In routing these circuits (MEMORY, MULTIP4 and TEST1)

o MacPitts produces an extremely long polysilicon wire that spans across the data-

N path. In contrast, the Monterey silicon compiler accesses these points with a short A

polysilicon wire on the right edge of data-path.

IO, N L (I S IR RR e s

Yy DN NN e SN NN S

o ¢! A N n

A AP N L N
R A IR MWL TN ST

Vs, or polysilicon to metal cuts are undesirable from the standpoint of cir-
cu't performance. The high capacitance associated with the metal to poly interface
should be avoided where possible. .\ discussion of the via reduction issues in the

Monterey silicon compiier was presented in Chapter IV.

e o o

't
'“
X
¢
‘\
¢
-

LG eSS

2 FEL AL A

e
¥ il

A

RS

: - N . LWL LR My N A AT R A T IPRIPR IR La? N S St f(.'.f Wy 0 g Wy ¥y oy »
I A T TR R g M MM Y 1 Ly ¥l A AR AL YA A V)

! VI. CONCLUSIONS

A. SUMMARY

.-
oy R

This thesis has introduced a new and improved pad router for use by the Mon-
terey silicon compiler to replace the router provided by the MacPitts silicon com-]

piler. The original MacPitts pad router suffered from a very inefficient pad place- o

PR B

ment and routing algorithms, as well as limitations in the ways signals could be

«
- -

| routed to the data-path. The improved performance of the Monterey compiler is

b ”.

the result of:

1. The ability to connect to data-path from either the left or right sides. MacPitts
was allows connections to data-path on the left side only. :

S

The ability to place pads on 2, 3, or 4 sides. All circuits designed by MacPitts 3
place pads on three sides. "

PR

b 3. Minimize use of polysilicon and vias in the routing area. MacPitts requires
up to 6 vias per net compared to one via per net in the Monterey compiler.
The new router was tested with various circuits. Comparative analysis with
b MacPitts’ layouts showed that the Monterey router results in smaller and faster :

layouts for all circuits. Area improvement ranged from 5% to 20%. Small circuits

i

'

;E tend to benefit most in area reduction. Large circuits show modest area improve-

] ments, primarily due to the collapse of the outer power ring on sides without pads.
All Monterey routed designs performed faster than their MacPitts' counterparts.

A ~ The greatest improvement was in circuits requiring connections from pads to the

right side of the data-path. Since MacPitts access to the data-path from the left

side only, it uses a long polysilicon wire to reach from the terminal inside data-path

Po S e

to the left edge of the circuit. This wire is not required by the Monterey compiler

-
'

2
\
‘
\
S
[]
W
1]

) because it can access the terminal through either the left or right sides.

-

-

99

§r

e e e p - o A g < A " P -
o R I

AU G R R AR S VIR 2V T IR RN U Y N UM U U TR (RN T 88 A R TUR RN TR TR O

B. RECOMMENDATIONS

The Monterey silicon compiler provdes fertile ground for continued study and

| . - e ot

development. The following recommendations should be considered for future thesis

research:

1. Significant speed improvements are possible in SCMOS technology by routing
the long polysilicon wires produced by data-path and by the river router,
' between the data-path and the controller, with metall.

)

The fixed floor plan used by MacPitts wastes area. This can be seen by the
large empty spaces below the data-path, as well as the area to the right of the

by controller. A study should be undertaken to examine different cell placement
! strategies. A possible alternative is to allow the different cells (data-path.
0 controller, flags and pads) to float until an optimal configuration is found. A
' channel router, in conjunction with a global router could be used to route the
| cells.
N 3. An alternative pad router should be developed to create designs that fit the
; various MOSIS standard chip frames.
;
P
4
W
Y
¥
1}
}
A
)
o
‘
4
]
%
Al
A
&
R
R
)
.
y
?
‘l
]
* 100
4
b
N
. ’.
+3 (
1
T N T P I T NN T 08

AT TIATNT)
PP Lt Nady =) Sl =" *.O"

ettt e e e 2 e e et R a0 2 A% 18 e ate ath et ati att a'1lath a i ati el ale Rt t et at R 0 gat Lt 0 g KOLR LY u NUWUY O™

APPENDIX A t
MACPITTS’ FUNCTIONS

This Appendix contains those functions in MacPitts that have a role i il !
placement and routing. The first function, get-basic-buses-from-port-output- X
unit is found in the general.l file. All other functions are in frame.l. ¢
;3ilayout routines t,
(def get-basic-buses-from-port-output-unit 4

(lambda (number-of-units tail unit unit-number) i

(update-basic-buses 0

(update-basic-buses)

tail y
(make-port-output-id (port-output-unit-name unit)) h
(make-left-tip)))) b

(make-port-output-id (port-output-unit-name unit)) N

(make-output-tip unit-number)))) d

L

(declare (special gates top-part)) !‘
o

(def layout-object ,

(lambda (object) @
(prog (definitions flags data-path control pins gates straps)
conductivity power data-path-length control-length b,
flags-length top-width bottom-width data-path-layout)

control-layout flags-layout river-layout wing-layout Q

skeleton-layout internal-layout pins-layout ring-layout oy

layout nets ring-width top-part bottom-part top-bank N

bottom-bank river-width bottom-part-river-points
intended-right intended-top extended-right extended-top) '
(setq definitions (object-definitions object)) 1
(setq flags (object-flags object)) A
(setq data-path (object-data-path object))
(setq control (object-control object)) %
(setq pins (object-pins object)) '
(herald "Extruding gates") By
(setq gates (extrude-gates control flags))
(statistic (concat "Control has " (length gates) " columns")) .
(cond ((member? ’opt-c option-list) yt
(setq gates N
(nthelem-list '

(order (extrude-basic-straps gates) N

gates -

(count (length gates)) r

(function junction-gate-number) 4
(lambda (basic-strap) basic-strap) o
(lambda (gatel gate2) .

101

' e L IO S S LA YA
O R I R A e N0 L 2

.....

(gate-before? gatel gate2 gates))
(lambda (gatel gatel)
(gate-after? gatel gate2 gates)))
gates))))
(setq gates (insert-nor-ground-lines gates))
(herald "Extruding straps")
(setq straps (extrude-straps gates))
(statistic
(concat "Circuit has "
(slash-alpha
(list (flags-transistor-count flags)
(data-path-transistor-count data-path
definitions)
(control-transistor-count gates straps)
(pins-transistor-count pins))
0
(function +)
(lambda (x) (+ (car x) (cadr x))))
" transistors"))
(statistic
(concat "Control has "
(slash-alpha straps 0 (function max)
(function strap-track-number))
" tracks"))
(setq conductivity (plus (data-path-conductivity
data-path definitions)
(control-conductivity gates straps)
(flags-conductivity flags)))
(setq power (conductivity-to-power-bus-width conductivity 11))
(statistic (concat '"Power consumption is "
(conductivity-to-power-consumption
(plus conductivity
(pins-conductivity pins)))
" Watts"))
(setq data-path-length
(max (data-path-required-length data-path definitions)
4))
(setq control-length (control-required-length gates))
(setq flags-length (max (flags-required-length flags power)
4))

(setq top-width (max (data-path-required-width
data-path power definitions)
(flags-required-width flags power)))
(setq bottom-width (control-required-width straps))
(herald "Laying out data-path")
(setq data-path-layout
(layout-data-path data-path power top-width
definitions))
(herald "Laying out control")
(setq control-layout
(layout-control gates straps power bottom-width))
(herald "Laying out flags'")
(setq flags-layout (layout-flags flags power top-width))
(herald "Laying out river")

»y, . oy P LN N TN LN O
O A SR AT A N SISO VR £ SRR AR Y

R A R T R LN TR R R A A T U WU N WANY ¢ "5 e € 8 A" A.8" Vat® 6 0 008 6ok Oo8 Yal Fi4 08 cat ¢

(setq top-part
(merge (move data-path-layout (+ power 3) 0)
(move flags-layout
(+ power 3 data-path-length 3 power 3) 0)))
(setq bottom-part
(move control-layout (+ power 3) (- power 4)))
(setq bottom-part-river-points
(find-attributes bottom-part ’(river)))
(setq top-bank
(sort (alpha (lambda (point)
(point-x (find top-part
(point-name point))))
bottom-part-river-points)
(function <)))
(setq bottom-bank
(sort (alpha (function point-x)
bottom-part-river-points)
(function <)))
(setq river-width -
(+ (river-span ’'NP 2 top-bank bottom-bank)
(wing-span bottom-part)
(- 4 power)))
(setq intended-top
(+ power bottom-width power river-width (driver-width)
power top-width power 3 power))
(setq intended-right
(+ power 3
(max control-length (+ data-path-length 3 power
3 flags-length))
3 power))
(setq river-layout
(river ’NP 2 (wing-span bottom~part) top-bank bottom-bank))
(herald "Laying out wing")
(setq wing-layout
(layout-wing (sort (find-attributes
bottom-part ’(wing))
(flambda (pointl point2)
(< (point-x pointl)
(point~x point2))))))
{herald "Laying out skeleton")
(setq skeleton-layout
(layout-skeleton power intended-top intended-right
data-path-length bottom-width river-width))
(setq internal-layout
(merge
(move top-part
0 (+ power bottom-width power river-width
(driver-width) power))
bottom-part
(move (rotcw river-layout)
0 (+ power bottom-width power river-width))
(move wing-layout 0 (+ power bottom-width 4))
skeleton-layout))
(herald "Laying out pins")

103

vat

et At "2 *p

w
2
[

H
s
*

"2' r

r
5

. 4l aen ens 8o & N B dha AN A -ava ata dla alnata" wad tay vy
R I W I FU VIS “i3g atg uf v e ate?aleaiatattalatalat St Bat 028 Na¥ §o¥ 4.0 Qat Rat it N

'}

Nt

A

(setq pins-layout X
(layout-pins Q
pins %
power ",
intended-right 2
intended-top Ny
(make-ring-width 0 0 0 0) B,
(lookup-logo definitions))) ()

(setq extended-right (extend-right pins intended-right))
(setq extended-top (extend-top pins intended-top)) -
(setq ring-width
(get-ring-width
(merge internal-layout pins-layout) extended-right

extended-top)) fot!

(setq pins-layout o'
(layout-pins]

pins A

power)
intended-right. iy
intended-top 4
ring-width)
(lookup-logo definitions))) o

(setq layout !
(first-quadrant (merge internal-layout pins-layout 3
ring-layout))) !
(statistic (concat "Dimensions are ")
;;jh replaced minimum-feature-size with lambda-spacing. J
(quotient (times (right layout) . 2@
(1ambda-spacing)) :

100000.0)

" mm bY " . \:

(quotient (times (top layout) N
(lambda-~spacing))]
100000.0))
“ mmu)) .:"
(return layout))))} ’
A
(def wing-span 3”
(lambda (item) 2
(1+ (* & (length (find-attributes item ’(wing))))))) Wl
¢

(defsymbol layout-wing (points) b
(merge-list a
(alpha o
(lambda (point wing-number))
(merge '
(rect ’'NP 0O ;Q

(~ (* 5 wing-number) 3)

(+ (point-x point) 1)

(~ (* 5 wing-number) 1))
(rect 'NP (- (point-x point) 1)

0

(+ (point-x point) 1)

(- (* 5 wing-number) 1))

i

o
F\—-

=5 5

104

4
-

X

.

. — g - , ,
: ' SN M s ! Wy 0 OO T 0, L SO OO X WA IR N
TNﬂhﬂﬂmmnﬂﬁuhumﬁhhAuhuuwmhmﬁmﬁﬁh,ﬁ.L.uMMMMMAMJJ O AERARGAUNE RN 0

(mark (car (point-name point))
0
(- (* 5 ving-number) 2)
)Np)
(ring left inside))))
points
(count (length points)))))

;5 ;layout nets

(declare (special nets right top power power-point ground-point)) (def
layout-nets
(lambda (nets right top power power-point ground-point)
: (merge-list
. (alpha (lambda (net)
‘ (layout-net net nets right top power power-point
ground-point))
nets))))

(declare (unspecial nets right top power
power-point ground-point))
(def layout-net
(lambda (net nets right top power power-point ground-point)
(cond ((is-point-top? (car (net-basic-net net)))
{ (layout-top-net net nets right top
(cond ((is-point-top? power-point)
(point-x power-point))
((is-point-top? ground-point)
(point-x ground-point))
t ON
power))
((is-point-right? (car (net-basic-net net)))
(layout-right-net net nets right top
(cond ((is-point-right? power-point)
(point-y power-point))
((is-point-right? ground-point)
(point-y ground-point))
t ON
power))
((is-point-bottom? (car (net-basic-net net)))
(layout-bottom-net net nets right top
(cond ((is-point-bottom? power-point)
(point-x power-point))
((is-point-bottom?
ground-point)
: (point-x ground-point))
t ON
N pover))
((is-point-left? (car (net-basic-net net)))
(layout-left-net net nets right top
(cond ((is-point-left? power-point)
(point-y power-point))
((is-point-left? ground-point)

105

e\l
. 1 | ¢ > A, b - ~, g’ be' by ())
,i‘_',‘,‘ PO ‘)i‘-‘i‘e‘_i’\’l‘ ,‘*.‘t‘.’\’-.A‘a \‘1_ ﬂ‘\'t.l’m ..l\. |\.tul’;.l'n.l'n.l.s,i...l‘. c.,l.;_!‘;“l % ‘5,.‘: ..‘t‘n.i'o,ﬁ‘;j‘: l"‘\ K AN ..l,l.l AN Lt h, ‘:‘A‘.ﬁt‘-‘l‘- a -‘0'-"; O.!.t’

PP PRIN A - . 7oA 46 Spd e§ gy fed vab LI ! MU T2l ta¥ val <ab - sl vall Vgl val ¥ VT A U R VAU AN RIS R AT OO U
; . . N " \d &)

,_
4

LS Y

"ol G-t

.')

O

-

A S

o

- Y

-
"

(o~
h

RS R U KA TR RO S VS UYURU X YRR R PR K A RACORIR N RO wawe

(point-y ground-point))
(t O))
power)))))

(declare (special nets right top track-number))

(def layout-top-net
(lambda (net nets right top skip power)
(let ((basic-net (net-basic-net net))
(track-number (net-track-number net)))
(let ((left-x
(cond ((is-point-first? (basic-net-left-point
basic-net)) 2)
(t (point-x (basic-net-left-point basic-net)))))
(right-x
(cond ((is-point-last? (basic-net-right-point
basic-net))
(- right 2))
(t (point-x (basic-net-right-point
basic-net))))))
(merge
(merge-list
(alpha (lambda (point)
(layout-top-point point nets right
top track-number))
basic-net))
(cond
((or (null skip)
(< right-x (- skip (/up power 2) 3))
(> left-x (+ skip (/up power 2) 3)))
(rect ’'NM left-x
(+ top (* 7 track-number) -4)
right-x
(+ top (* 7 track-number))))
(t (merge
(rect ’NM left-x
(+# top (* 7 track-number) -4)
(- skip (/up power 2) 3)
(+ top (* 7 track-number)))
(rect ’NM (+ skip (/up power 2) 3)
(+ top (* 7 track-number) -4)
right-x
(+ top (* 7 track-number)))
(rect ’NP (- skip (/up power 2) 7)
(+ top (* 7 track-number) -4)
(+ skip (/up power 2) 7)
(+ top (x 7 track-number)))
(move (poly-cut) (- skip (/up power 2) 7)
(+ top (* 7 track-number)))
(move (poly-cut) (+ skip (/up power 2) 3)
(+ top (* 7 track-number)))))))))))

(declare (unspecial nets right top track-number))

106

» b &' = LI . T -y - o " AR R ..r-\' 2y, ‘.'."'
"?“‘»“‘.‘\"’:"3\ 3' .'\‘?‘4 \‘.\‘h :.t .“.n".l".\.\.\,i ;.'.“\ .“‘I‘.‘u.!..'lu A'I.l‘i (Y I‘ ol Y a.l . l,\‘ 1L ‘~ M ».J . y l".n.i. JJ ', .t" ["."l“ 54) n“J.I [} ... ’

i

RO
BRI

RN N R N NN UL NUN RN W ‘g4 2t at AR TR S W WU UK O AR S KN R AR AN KN RL N Y

(declare (special nets right top track-number))

(def layout-right-net
(lambda (net nets right top skip power)
(let ((basic-net (net-basic-net net))
(track-number (net-track-number net)))
(let ((top-y
(cond ((is-point-first? (basic-net-left-point
basic-net)) top)
(t (point-y (basic-net-left-point basic-net)))))
(bottom-y
(cond ((is-point-last? (basic-net-right-point
basic-net)) 0)
(t (point-y (basic-net-right-point
basic-net))))))
(merge
(merge-list
(alpha (lambda (point)
(layout-right-point point nets right
top track- number))
basic-net))
(cond
((or (null skip)
(< top-y (- skip (/up power 2) 3))
(> bottom-y (+ skip (/up power 2) 3)))
(rect ’NM (+ right (* 7 track-number) -4)

bottom-y
(+ right (* 7 track-number))
top-y))
(t (merge
(rect ’NM (+ right (* 7 track-number) -4)
bottom-y

(+ right (* 7 track-number))
(- skip (/up power 2) 3))
(rect ’NM (+ right (* 7 track-number) -4)
(+ skip (/up power 2) 3)
(+# right (* 7 track-number))
top-y)
(rect NP (+ right (* 7 track-number) -4)
(- skip (/up power 2) 7)
(+ right (* 7 track-number))
(+ skip (/up power 2) 7))
(move (poly-cut) (+ right (* 7 track-number))
- skip (/up power 2) 7))
(move (poly-cut) (+ right (* 7 track-number))
(+ skip (/up power 2) 3))))))))))

(declare (unspecial nets right top track-number))
(declare (special nets right top track-number))
(def layout-bottom-net

(lambda (net nets right top skip power)
(let ((basic-net (net-basic-net net))

107

A, e Do el Lo g § a8 Faf «an fed xb R 2R ¥ab Yub s ol Tau vad Fa b . Q 8 eaf valk sah 64 8. a8 Yol 9o *al.val waf Wah doh g il vab % 'k Yok

(track-number (net-track-number net)))

i (let ((right-x

(cond ((is-point-first? (basic-net-left-point
basic~net))

) (- right 2))

; (t (point-x (basic-net-left-point basic-net))))’
. (left-x

2 (cond ((is-point-last? (basic-net-right-point

basic-net)) 2)
(t (point-x (basic-net-right-point
N basic-net))))))
(merge
“ (merge-list
(alpha (lambda (point)
(layout-bottom-point point nets right
X top track-number))
B basic-net))
(cond

5 (Cor (null skip)
y (< right-x (- skip (/up power 2) 3))
. (> left-x (+ skip (/up power 2) 3)))
(rect ’'NM left-x

(- (* 7 track-number))

right-x

(- 4 (*x 7 track~number))))

e

(t (merge
(rect ’NM left-x
(- (* 7 track-number))
(- skip (/up power 2) 3)
(- 4 (x 7 track-number)))
(rect ’NM (+ skip (/up power 2) 3)
(- (* 7 track-number))
right-x
(- 4 (» 7 track-number)))
(rect NP (- skip (/up power 2) 7)
(- (* 7 track-number))
. (+ skip (/up power 2) 7)
X (- 4 (* 7 track-number)))
. (move (poly-cut) (- skip (/up power 2) 7)
4 (* 7 track-number)))
' (move (poly-cut) (+ skip (/up power 2) 3)
(- 4 (= 7 track-number)))))))))))

W
Py

- -
P

. P
L

I (declare (unspecial nets right top track-number))
K (declare (special nets right top track-number))

= (def layout-left-net
(lambda (net nets right top skip power)
(let ((basic-net (net-basic-net net))
(track-number (net-track-number net)))
(let ((bottom-y
(cond ((is-point-first? (basic-net-left-point
basic-net)) 0)

-
-

o m e e

- ’.-

- e
- .

108

Za}

-
» T

3
i)
3

] . o . - ; ; L h ' OGN VN W
“ﬁﬁﬁﬂwwﬂ@ﬁﬁ@Mﬁﬁmﬂﬂmw¢ﬁmm&mﬁmmlMMM&HAﬁMﬁmt.hhahhﬂnhMMv sty

R R R R R O N L T R T A A T R R AR T U MO U U T TN AT DD BaB b @ 6. <u tah Stk sab ¥ pR tpil®

(t (point-y (basic-net-left-point basic-net)))))
(top-y
(cond ((is-point-last? (basic-net-right-point
basic-net)) top)
(t (point-y (basic-net-right-point
basic-net))))))
(merge
(merge-list
(alpha (lambda (point)
(layout-left-point point nets right
top track-number))
basic-net))
(cond
((or (null skip)
(< top-y (- skip (/up power 2) 3))
(> bottom-y (+ skip (/up power 2) 3)))
(rect ’NM (- (* 7 track-number))

bottom-y
(- 4 (*+ 7 track-number))
top-y))
(t (merge
(rect ’'NM (- (* 7 track-number))
bottom-y

(- 4 (* 7 track-number))
(- skip (/up power 2) 3))
(rect ’NM (- (* 7 track-number))
(+ skip (/up power 2) 3)
(- 4 (* 7 track-number))
top-y)
(rect NP (- (* 7 track-number))
(- skip (/up power 2) 7)
(- 4 (» 7 track-number))
(+ skip (/up power 2) 7))
(move (poly-cut) (- 4 (* 7 track-number))
(- skip (/up rower 2) 7))
(move (poly-cut) (- 4 (* 7 track-number))
, (+ skip (/up power 2) 3)))))))N)))

(declare (unspecial nets right top track-number))

(def layout-top-point
(lambda (point nets right top track-number)
(cond
((is-point-first? point)
(merge
(move (poly-cut) (- (* 7
(last-point-track-number
(point-name point) ’left nets)))
(+ top (* 7 track-number)))
(move (poly-cut) 0
(+ top (* 7 track-number)))
(rect NP (- (* 7
(last-point-track-number (point-name point)
’left nets)))

109

¥

xL LT,

e,

(PP TR LI PRUR TR PO TR PO S T PO TR W UK O et Gt B2t *0a® ‘R8s ’

(+ top -4 (* 7 track-number))
0

(+ top (* 7 track-number)))))
((is-point-last? point)
(merge
(move (poly-cut) (+ right -4
(# 7 (first-point-track-number
(point-name point)
'right nets)))
(+ top (* 7 track-number)))
(move (poly-cut) (- right 4)

(+ top (* 7 track-number)))
(rect ’NP right

(+ top -4 (* 7 track-number))
(+ right -4
(* 7 (first-point-track-number
(point-name point) ’right nets))>
(+ top (* 7 track-number)))))
(t (merge
(move (poly-cut) (- (point-x point) 2)
(+ top (* 7 track-number)))
(rect ’NP (1- (point-x point))
(min (+ top (* 7 track-number)) (point-y point))
(1+ (point-x point))
(max (+ top (* 7 track-number))
(point-y point))))))))

(def layout-right-point
(lambda (point nets right top track-number)
(cond
((is-point-first? point)
(rect ’'NM (+ right (* 7 track-number) -4)
to
(+pright (* 7 track-number))
(+ top (* 7 (last-point-track-number

(point-name point) ’top nets)))))
((is~point-last? point)
(rect ’NM (+ right (* 7 track-number) -4)
(- (* 7 (first-point-track-number
(point-name point) ’bottom nets)))
(+ right (* 7 track-number))
0))
(t (merge
(move (poly-cut) (+ right -4 (* 7 track-number))
(+ (point-y point) 2))
(rect 'NP (min (+ right -4 (* 7 track-number))
(point-x point))
(1- (point-y point))
(max (+ right -4 (* 7 track-number))
(point-x point))
(1+ (point-y point))))))))

(def layout-bottom-point
(lambda (point nets right top track-number)

110

, oLs DTN 08
Srbont et TN I ' f %% ' OG0 LG MNP O s ok o
a) 3hy SR LT N

. { i % o) A 3 N g™t K Ay, C W 'y 7
B A S o e Py S e AN S0 W Pt et

((is-point-first? point)
(merge
(move (poly-cut) (+ right -4
(* 7 (last-point-track-number
(point~name point) ’right nets)))
(- 4 (* 7 track-number)))
(move (poly-cut) (- right 4)
(- 4 (* 7 track-number)))
(rect ’NP (- right 4)
(- (* 7 track-number))
(+ right (* 7 (last-point-track-number
(point-name point) ’right nets)))
(- 4 (* 7 track-number)))))
((is-point-last? point)
(merge
(move (poly-cut) (- (* 7 (first-point-track-number
(point-name point) ’left nets)))
(- 4 (x 7 track-number)))
(move (poly-cut) O
(- 4 (* 7 track-number)))
(rect NP (- (* 7 (first-point-track-number
(point-name point) ’left nets)))
(- (* 7 track-number))
0
(- 4 (* 7 track-number)))))
(t (merge
(move (poly-cut) (- (point-x point) 2)
(- 4 (* 7 track-number)))
(rect 'NP (1~ (point-x point))
(min (point-y point) (- 4 (* 7 track-number)))
(1+ (point-x point))
(max (point-y point)
(- 4 (x 7 track-number)))))))))

(def layout-left-point
(lambda (point nets right top track-number)
(cond
((is-point-first? point)
(rect ’NM (- (* 7 track-number))
(- (* 7 (last-point-track-number (point-name point)
'bottom nets)))
(- 4 (* 7 track-number))
0))
((is-point-last? point)
(rect 'NM (- (* 7 track-number))
top
(- 4 (* 7 track-number))
(+ top (* 7 (first-point-track-number
(point-name point) ’top nets)))))
(t (merge
(move (poly-cut) (- (* 7 track-number))
(+ (point-y point) 2))
(rect NP (min (- (* 7 track-number)) (point-x point))

111

“J‘J‘{- ’-'\.’.\"\"\‘.\.\ Ly

. .
RS '\\

&

g . batita” AR A et hagded bl a8 Sab Saf tal pEaBal Sav Ak sav St atralar tatgty guy gb
R S P A AT UM T UR I AN AR K T RN ANV WU WY Ny e g g togtiaga Sob Sab). ¢

(1- (point-y point))
(max (- (* 7 track-number)) (point-x point)) X
(1+ (point-y point))))))))

o
"
(declare (special net-name side)) »
(def first-point-track-number Q
(lambda (net-name side nets) ﬁ%
(net-track-number 3
(first-that \
nets
a o
(lambda (net) %
(and (member? side (point-attributes "
(basic-net-left-point (net-basic-net net)).. <
(is-point-first? (basic-net-left-point (net-basic-net net)), !
(equal (point-name (basic-net-left-point ®
(net-basic-net net))) 0
net-name))))))) oy
[a%
(declare (unspecial net-name side)) ?i

-
»

L
v

(declare (special net-name side))

““

(def last-point-track-number

&4
(lambda (net-name side nets) ;s
(net-track-number . !
(first-that 3
nets

O N
(lambda (net)) ,
(and (member? side W,
(point-attributes o
(basic-net-right-point ‘?

(net-basic-net net))))
(is-point-last? (basic-net-right-point N
(net-basic-net net))) h&
(equal (point-name (basic-net-right-point A
(net-basic-net net))) 0

net-name))))))) R
(declare (unspecial net-name side))

(def get-ring-width
(lambda (item right top)

? ol f"l'd' -

(make-ring-width ~
(* 7 (net-track-number °
(minmax (extract-nets item ’top right top) ’

(lambda (netl net2)

(> (net-track-number nettl) vl

(net-track-number net2)))))) A,

(* 7 (net-track-number "
(minmax (extract-nets item ’right right top) '

~ '

112 |

U

't
»

I~ -

X

-

‘*1

(X

3 Al 3 W \.l "‘ - am . - * -’-*- v-}-*n'\‘.'vf d
R R R A R I NI AT DO A O I A A A sy A NN W X e

SRR T A TR FOM R

RMUII ON R)

‘....l - ., ".‘“‘)""*““ WL v R L L.'\‘., = b.‘ 3 * , . -

(lambda (netl net2)
(> (net-track-number netl)
(net-track-number net2))))))
(* 7 (net-track-number
(minmax (extract-nets item ’'bottom right top)
(lambda (netl net?2)
(> (net-track-number neti)
(net-track-number net2))))))
(* 7 (net-track-number
(minmax (extract-nets item ’left right top)
(lambda (netl net2)
(> (net-track-number neti)
(net-track-number net2)))))))))

(declare (special side))

(def extract-nets
(lambda (item side right top)
(allocate-tracks
(such-that (extract-subnets
(rotate-basic-nets
(order-basic-nets (extract-basic-nets item))
right top))
(lambda (basic-net)
(member? side
(point-attributes
(car basic-net)))))
(function basic-net-left-point)
(function basic-net-right-point)
(function basic-net-point-further-left?)
(function basic-net-overlap?))))

(declare (unspecial side))

(def extract-subnets
(lambda (nets)
(cond
({null nets) ())
(t (append (extract-subnet (car nets))
(extract-subnets (cdr nets)))))))

(def extract-subnet
(lambda (net)
(let ((net-name (point-name (car net))))
(cond ((null net) ())
((is-point-top? (car net))
(extract-top~subnet (list (car net)) ()
(cdr net) net-name))
((is-point-right? (car net))
(extract-right-subnet (list (car net)) ()
(cdr net) net-name))
((is-point-bottom? (car net))
(extract-bottom-subnet (list (car net)) ()
(cdr net) net-name))

113

Mtk ol K A oM Lo 2000) L)

S TUTLYY e - - s A N T A W T AT AT TAT AT AT " At A A
AR NN ¢ L ("'\‘ W "‘ O XN T o A Y

- "J""’ RIS IR

A

ok

ScS] T e

5,

o

22T kxS

oy

b

"\'N-'"
! <. EaM)

SIPTUIC v T upyes v AR O T VT T R P T I PO)
b e e et e e a a0 et At B et a0 a %k 2% AR a0 2’0 AN aVE 28" (e aat ¥R al, o s » . & - 9p " o 24)

((is~point-left? (car net))
(extract-left-subnet (list (car net)) ()
(¢dr net) net-name))))))

(def extract-top-subnet
(lambda (subnet subnets net net-name)
(cond ((null net) {cons subnet subnets))
Dy ((is-point-top? (car net))
; (extract-top-subnet 1
(appendi subnet (car net)) subnets (cdr net) net-name)’ _
((is-point-right? (car net)) \
(extract-right-subnet
(1ist (make-point net-name () () () y
(right first ring))) '

0 (append !
9 (1ist (appendl subnet
b (make-point net-name () () () '
'(top last ring))))
N subnets)
net

T o

net-name))
((is-point-bottom? (car net))
(extract-bottom-subnet
(list (make-point net-name () () ()
’(bottom first ring)))

P
o

ﬁ (append ;
o (l1ist (appendl subnet :
: (make-point net-name () () () A
R '(top last ring))))
: (list (make-point net-name () () ()

c '(right first ring)) A

L (make-point net-name () () () T
& ’(right last ring)))) ;

) subnets) X
: net 3
! net-name))

. ((is-point-left? (car net))

' (extract-left-subnet :
X (list (make-point net-name () () () y
b '(left first ring)))

» (append

o (1ist (appendl subnet

- (make-point net-name () () ()

$ '(top last ring))) h
s (list (make-point net-name () ()

s '(right first ring)))
\ (make-point net-name () () ()

: '(right last ring)))

5 (list (make-point net-name () () () :

W ’(bottom first ring)) :
i (make-point net-name () () () 3
ty *(bottom last ring)))) - :
. subnets) "

net

- L

114

' T
AL R, Sh-Sa-

)
U
()

-

L
)

At
AT O o S o O AP S T Loy "

. T N R R R U R R (e)
.\"'.'.'('o’ﬁ‘\\‘\'\ N..\ R (

...... R b A 8 R atiind a” Ll

P’
net-name))))) '$:
o
(def extract-right-subnet ;ﬁ
(lambda (subnet subnets net net-name) o
(cond ((null net) (cons subnet subnets)) !
((is-point-top? (car net)) L}
(extract-top~subnet <
(list (make-point net-name () () () ’(top first ring))) hx
(append -ﬁh
(list (appendl subnet oﬁ
(make-point net-name () (O O r
'(right last ring)))
(1ist (make-point net-name ()
' (bottom first ring))
(make-point net-name () () ()
*(bottom last ring)))
(1ist (make-point net-name () (O O

'(left first ring))
net-name () () ()
'(left last ring))))

(make-point

subnets)
net
net-name))
((is-point-right? (car net))
(extract-right-subnet
(appendl subnet (car net)) subnets (cdr net) net-name))
((is-point-bottom? (car net))
(extract-bottom-subnet
(1ist (make-point net-name () () O
’(bottom first ring)))
(append
(list
(appendl subnet (make-point net-name () () O
'(right last ring))))
subnets)
net
net-name))
((is-point-left? (car net))
(extract-left-subnet
(1ist (make-point net-name () () ()
'(left first ring)))
(append
(l1ist (appendl subnet
(make-point net-name () () O
'(right last ring)))

(1ist (make-point net-name () () (O
'(bottom first ring))
(make-point net-name () () (O
’(bottom last ring))))
subnets)
net

net-name)))))

(def extract-bottom-subnet

115

o - ~ A A A AT n-
OGO S AN TN SRR K R B P AR S o S STA NETWE S

R ".". -‘._‘~ ..‘.l*. .l. ' "N ™ oLy

-

EXG TSN A

| (lambda (subnet subnets net net-name)
| (cond ((null net) (cons subnet subnets))
((is-point-top? (car net))
(extract-top-subnet
(1ist (make-point net-name () () () ’'(top first ring)’’
(append
(list
(append! subnet (make-point net-name () (OO O
'(bottom last ring)))
(1ist (make-point net-name () (O ()
»(left first ring))
(make-point net-name () () ()

'(left last ring))))
subnets)

net

net-name))
((is-point-right? (car net))
(extract-right-subnet

(1ist (make-point net-name () () ()
'(right first ring)))

(append
(list
(appendl subnet (make-point net-name () (O O

'(bottom last ring)))
(1ist (make-point net-name () () ()

'(left first ring))
(make-point net-name () (O (O
'(left last ring)))
(1ist (make-point net-name () () ()
*(top first ring))
(make-point net-name () () (O

’(top last ring))))
subnets)

net

net-name))
((is-point-bottom? (car net))
(extract-bottom~-subnet

(appendl subnet (car net)) subnets (cdr net) net-name))
((is-point-left? (car net))

(extract-left-subnet
(l1ist (make-point net-name () () (O
'(left first ring)))
(append
(list
(appendl subnet
(make-point net-name () () (O

'(bottom last ring))))
subnets)

net
net-name)))))

(def extract-left-subnet
(lambda (subnet subnets net net-name)
{(cond ((null net) (cons subnet subnets))

116

. . o . « e g - - tm .t R . . S e ~ . .
"“ ?ﬂ‘\‘?\ ' Iy Y i n".‘q't.l'-'l.- . Q.v‘..o .l.‘.l!"l.l-h _’*" X "l. 3 a‘h L N ., ' Oa N \ N Ar:.!l » J~ AN N L * A,O (g X S o Mo XN B) lu\‘ L}

{ [¥ 4,8 & ’ fod { (% ? b »
":‘I’, LN Q'\,!‘-,I.a.l.n Ol !‘cl‘u.“t,l‘l. .!."I I’.v!" \‘-‘l'o‘\ 'S, Ay ‘;‘J‘- 'u_“n '-'l‘o WL A.’."..‘l‘- 8! N

((is-point-top? (car net))
(extract-top-subnet
(1ist (make-point net-name () () () ’'(top first ring))’
(append
(list (appendl subnet
(make-point net-name () () O
'(left last ring))))

subnets)
net
net-name))
((is-point-right? (car net))
(extract-right-subnet
(1ist (make-point net-name () () O
'(right first ring)))
(append
(1ist (appendl subnet
(make-point net-name () (0 (O
'(left last ring)))
(1ist (make-point net-name () () O
'(top first ring))
(make-point net-name () (0 ()

'(top last ring))))
subnets)

net
net-name))
((is-point-bottom? (car net))
(extract-bottom-subnet
(list (make-point net-name () () O
'(bottom first ring)))
(append
(1ist (append! subnet
(make-point net-name () (O (O
'(left last ring)))
(list (make-point net-name () () ()
'(top first ring))
(make-point net-name () () ()
'(top last ring)))
(1ist (make-point net-name () () ()
’(right first ring))
(make-point net-name () (0 ()
’(right last ring))))
subnets)
net
net-name))
((is~point-left? (car net))
(extract-left-subnet
(appendl subnet (car net))
subnets (cdr net) net-name)))))

(declare (special item))
(def extract-basic-nets

(lambda (item)
(alpha (lambda (name)

¢ . A TR N Y)
AV X RSN ST AR RSN A S

.‘a

N""P". >

‘_.
e,

o

{such-that (find-all item name) "

\!
(lambda (point) o

(member? ’ring (point-attributes point))))) A

(setify (alpha (function point-name) 0
(find~attributes item ’(ring))))))) .f

,:n

(declare (unspecial item)) R
]

(def order-basic-nets i
(lambda (basic-nets) Al
(alpha (lambda (basic-net) .
(sort basic-net 4

(function basic-net-point-further-left?))) 0

basic-nets))) ?

(declare (special right top))
(def rotate-basic-nets N,
(lambda (basic-nets right top) s
(alpha (lambda (basic-net) K
(rotate basic-net ¥
(rotation-amount basic-net right top))) o

basic-nets))) ;

“
(declare (unspecial right top)) ﬂf
0

(def rotation-amount . $
(lambda (basic-net right top) W
(cond ((or (null basic-net) (= (length basic-net) 1)) 0) b
(t (rotation-count o
(rotation-amountl basic-net .

(car (last basic-net)) right top)))))) 3

X

(def rotation-amountl ¥
(lambda (basic-net last right top) b
(let ((head (make-rotation ¥
0 L]
(basic-net-distance last 3

(car basic-net) W

right top)))) &
(cond '
((= (length basic-net) 1) head) 3
(t (let ((tail (rotation-amountl (cdr basic-net) ?f
(car basic-net) right top))) X

(cond ((> (rotation-distance tail) .
(rotation-distance head)) A
(make-rotation (1+ (rotation-count tail)) '
(rotation-distance tail))) "
(t head)))))))) N

(def basic-net-left-point ﬁ

(lambda (basic-net)

(car basic-net))) "
¢
2
118 "
u

Q.‘

]
N
'\

R R O TN N A A,

......

. . " -.-1' y W m T WO W O WX
“‘ L} ‘.'n“%“.’:‘?h‘,‘i ‘I‘.‘l. C ..‘A‘:'i Nt ¢~ Jl 0'0 b".;‘l’!" n‘! .' ' My a’i uw ! L) .n'..- ,s.l,’.'.m l...\ ..l.u L)
T laT, a AVE T8 2%

AR R A S AR N P AR T AR AR IR RN LUR UV L P UN UR LT URLUY U UV OV UL LU TRTA VAN IV T wiX VRN

(def basic-net-right-point ‘k

(lambda (basic-net) \%

(car (last basic-net)))) 5

(def basic-net-point-further-left? &‘

(lambda (pointl point2) i,

(cond ((is-point-first? pointl) (not (is-point-first? point2))) it

((is-point-last? pointi) ()) $

((is-point-first? point2) ()) o,
((is-point-last? point2) t)

((is-point-top? point1l) n

(< (point-x pointl) (point-x point2))) .

((is-point-right? point1) 0

(> (point-y pointl) (point-y point2))) ,$

((is-point-bottom? pointl) ne

(> (point-x pointl) (point-x point2))) -

((is-point-left? pointl) o

(< (point-y point1) (point-y point2)))))) o

(.‘

(d~f basic-net-overlap? 7$

(lambda (basic-net left-point) "

(let ((right-point (basic-net-right-point basic-net)))
(cond ((is-point-first? right-point) !
(is-point-first? left-point)) 2
((is-point-last? right-point) t) !

((is-point-first? left-point) t) &
((is-point-last? left-point) ()) ﬁ
((is-point-top? right-point)

(> (point-x right-point) (- (point-x left-point) 7))) »

((is-point-right? right-point) 'k‘

(< (point-y right-point) (+ (point-y left-point) 7))) o
((is-point-bottom? right-point) %

(< (point-x right-point) (+ (point-x left-point) 7))) ;ﬁ

((is-point-left? right-point) 2
(> (point-y right-point) =

(- (point-y left-point) 7))))))) "

.'i

(def basic-net-distance ‘ﬁ

(lambda (pointl point2 right top) o

(let ((x1 (point-x pointl)) N

(y1 (point-y pointl)) o

(x2 (point-x point2)) o

(y2 (point-y point2))))

(cond)

((is-point-top? pointi) N
(cond -
((is-point-top? point2) g

. (cond q

((< xt x2) (- x2 x1)) &

(t (- (+ right right top top) (- x1 x2))))) ;:

((is-point-right? point2) (+ (- right x1) (- top y2))) '
((is-point-bottom? point2) "

(+ (- right x1) top (- right x2))) s

l':

119 o

o

"

o\

3

- D
D

" ~) IR0 D00 OB 0™
N O O S S O OO DO KA O AN T O AR O D I AN LA AL RARUATINI A LR L A U RN A AN

......

((is-point~left? point2) (+ (- right x1) top right y2))))
((is-point-right? point1)
(cond ((is-point-top? point2) (+ yl right top x2))
((is-point-right? point2)
(cond

(0> y1 y2) (- y1 y2»)

(t (- (+ right right top top) (- y2 y1)))))
((is-point-bottom? point2) (+ yi (- right x2)))
((is-point-left? point2) (+ yi right y2))))
((is-point-bottom? pointil)

(cond

((is-point-top? point2) (+ x1 top x2))

((is-point-right? point2) (+ x1 top right (- top y2)))

((is-point-bottom? point2)

(cond

(> x1 x2) (- x1 x2))

(t (- (+ right right top top) (- x2 x1)))))

((is-point-left? point2) (+ x1 y1))))

((is-point-left? pointl)

(cond

((is-point-top? point2) (+ (- top y1) x2))
((is-point-right? point2)

(+ (- top y1§ right (- top y2)))
((is-point-bottom? point2)

(+ (- top y1) right top (- right x2)))
((is-point-left? point2) X

(cond ¥

((< yt y2) (- y2 y1)) o

(t (- (+ right right top top) (- y2 y1))))))))))) "X

(def point-side q;--

(lambda (point) ' 0y

(cond ((is-point-top? point) ’top) aﬁ

((is-point-right? point) ’right) o

((is-point-bottom? point) ’bottom) db

((is-point-left? point) ’left))))

N

(def point-value ‘ﬂa

(1ambda (point) a

(cond ((is-point-top? point) (point-x point)) $4

((is-point-right? point) (point-y point)) N
((is-point-bottom? point) (point-x point)) ®

((is-point-left? point) (point-y point))))) ;::

oot

(def is-point-inside? W

(lambda (point) Bl

(member? ’inside (point-attributes point)))) 3*

(def is-point-outside? . o~
(lambda (point) &
(member? ’outside (point-attributes point))))

(def is-point-top?

(lambda (point)

0
120 ?m

7 ° ~ " "y R W
PR AN N TR TIANNNTI MICUMICRI XKML R ICIOICA HNMM O RN A KR AN I =i IR R S R N g K RN A RN NCR A XK

R N e B'a B8 &'8.8" "
O T T AR LR R A O S U U ST JE UV US UW IS UN DY Y JW U vy g Y 0 23 5 g0 g% "':

R
(member? ’top (point-attributes point)))) g?
\‘in
(def is-point-bottom? ﬂy
(lambda (point) 'gﬁ
(member? ’bottom (point-attributes point)))) e
(def is-point-left? :g
(lambda (point) o'
(member? ’left (point-attributes point)))) e
e
AR
(def is-point-right? S
(lambda (point) '
(member? ’right (point-attributes point)))) a4
X
(def is-point-first? E
(lambda (point) e
(member? ’'first (point-attributes point)))) .‘
(def is-point-last? . _¢$
(lambda (point) v
(member? ’last (point-attributes point)))) “*
Q..‘.
;5 :layout pins N
(def pins-conductivity -ﬁ
(lambda (pins) O
(slash-alpha iy
pins éf
0.0 XN
(function plus) vt
(lambda (pin) (pad-conductivity (pin-pad pin)))))) ﬁb
VI
(defsymbol layout-pins g;
(pins power intended-right intended-top ring-width logo) uﬁ
(let ((pins-power 3
(conductivity-to~power-bus-width g.
(pins-conductivity pins))
(pad-class-default-power-bus-width)))) N
(let ((dimensions ﬁy
(pins-dimensions ‘pins pins-power ring-width)
intended-right intended-top))) v
(let ((top (dimensions-top dimensions)))
(right (dimensions-right dimensions)) >
(bottom (dimensions-bottom dimensions)) ~ T
(left (dimensions-left dimensions))) o
(let ((pins-layout (place-pins pins dimensions pins-power))) a
(let ((power-point (find pins-layout ’(power))) o

(ground-point (find pins-layout ’(ground)))))
(merge (cond ((member? ’logo option-list) .
(move (first-quadrant
(title logo ’NM ’nonie.r.10))
(+ left pins-power 3)
(+ bottom pins-power 3))) I
(t (null-item)))

121 M

’ - - " ’ L LR - A KPS 'J"-I"q"-"','\l' A
.t.‘-‘.f:v,{|‘,"A‘.{1‘,fa‘.fl'.f_tl,“o‘.!a“'_l‘.!l‘."t‘g),ﬁ!p, e, WYL W MR AN T N A " AP AN BT S AT e S 000,00 08! Q

R IAR R R AR AR R AN RN RNV NUN LR YR UN Y U L LA U L RTAO U AY > 1.ent Sal ap o INERIRU Y TR

0.'
X
WL
pins-layout 5 ’
(layout-power-ring pins-power power dimensions e
intended-right intended-top ﬁ
power-point ground-point) ~§
(layout-ground-ring pins-power power dimensions)
intended-right intended-top '
pover-point ground-point)))))))) - '&
\J
(def layout-power-ring iﬁ
(lambda (pins-power power dimensions intended-right intended-top . “k
power-point ground-point) Uy
(let ((top (dimensions-top dimensions))
(right (dimensions-right dimensions)) e
(bottom (dimensions-bottom dimensions)) '
(left (dimensions-left dimensions))))
(merge (rect ’'NM left o
(-~ top pins-power) "
right >
top) o
(rect 'NM (- right pins-power) $@
bottom)
right *{
top)]
(rect ’NM left ®
bottom N
right w‘,‘:
(+ bottom pins-power)) Y
(rect ’NM left . s
bottom ‘k
(+ left pins-power) b
top) s
(cond ((is-point-top? power-point) . “}
(warning "Power pin can not be on top e
side of circuit") W
(rect ’'NM (- (point-x power-point) o
(/up power 2))
intended-top)
(+ (point~x power-point) o
(/up power 2)) N
(point-y power-point))) 2
((1s-p01nt right? power-point) G

(rect 'NM intended-right
(- (point-y power-point) y

(/up power 2)) :f
(point-x power-point)]
(+ (point-y power-point) 3
(/up power 2)))))
((is-point-bottom? power-point)
(rect ’NM (- (point-x power-point) 5
(/up power 2)) e
(point-y power-point)
(+ (point-x power-point) 3
(/up power 2)) Bl
0)) ’
o
122 2
"
b
N
- »y

A0 (] ‘ HAOGON0 {
2 N R b gl gt tan T b S

r ~ oo™ - - n i "
l; (X 0'0 UK l .:l.‘.l ‘,I‘,Q.O'Ll".‘_..l!;,l! .0.0. _|?l u.l‘..l‘l,b ._I'p?l'o.l..\l",i'.,l '.l‘._i‘.. 0‘-’!‘0.0‘. (W) (]

.|
&

O

((is-point-left? power-point) .}
(rect ’NM (point-x power-point) %5

(- (point-y power-point) n

(/up power 2)) o

0 -

(+ (point-y power-point) ?,

(/up power 2))))))))) ﬁg

N
(def layout-ground-ring yﬁ
. (lambda (pins-power power dimensions intended-right intended-top Al
power-point ground-point) -
(let ((offset (+ pins-power (pad-class-basic-height)))) a
(let ((top (- (dimensions-top dimensions) offset)) :ﬁ
(right (- (dimensions-right dimensions) offset))]
(bottom (+ (dimensions-bottom dimensions) offset)) pt
(left (+ (dimensions-left dimensions) offset))) 2N
(merge 2
(cond ((is-point-top? ground-point) ’
(rect 'NM (- (point-x ground-point) (/up power 2)))
intended-top b%

(+ (point-x ground-point) (/up power 2)) M

(point-y ground-point))))
((is-point-right? ground-point) -
(varning "“Ground pin must be on top side of circuit”) x
(rect ’NM intended-right "
(- (point-y ground-point) (/up power 2)) Wi

(point-x ground-point) “%

(+ (point-y ground-point) (/up power 2)))) N
((is-point-bottom? ground-point) 2
(rect ’NM (- (point-x ground-point) (/up power 2)) ,!!
(point-y ground-point) W
) (+ (point-x ground-point) (/up power 2)) é
0)) by
((is-point-left? ground-point) a$
(rect ’NM (point-x ground-point) .

. (- (point-y ground-point) (/up power 2)) .
(+ (point-y ground-point) (/up power 2))))) e

(cond ((is-point-top? power-point) o,
(merge b

(rect ’'NM left >
(- top pins-power) P
(- (point-x power-point) W
(/up (pad-class-width) 2)) 2
top) \

(rect ’NM (+ (point-x power-point) A
(/up (pad-class-width) 2)) AN

(- top pins-power)

right b
top) s
(rect ’NM (- right pins-power) >
bottom o

right ‘

top) ’

A
123 AY
o

. . . - - A W L . o'
O A D O TG O AT % CA SR A T Lo TR AT M A0 tg it

(rect ’NM left
bottom
right
(+ bottom pins-power))
(rect ’NM left
bottom
(+ left pins-power)
top)))
((is-point-right? power-point)
(merge
(rect ’NM left
(- top pins-power)
right
top)
(rect ’NM (- right pins-power)
(+ (point-y power-point)
(/up (pad-class-width) 2))
right
top)
(rect ’NM (- right pins-power)
bottom
right
(- (point-y power-point)
(/up (pad-class-width) 2)))
(rect ’NM left
bottom
right
(+ bottom pins-power))
(rect ’NM left
bottom
(+ left pins-power)
top)))
((is-point-bottom? power-point)
(merge
(rect ’'NM left
(- top pins-power)
right
top)
(rect 'NM (- right pins-power)
bottom
right
top)
(rect 'NM (+ (point-x power-point)
(/up (pad-class-width) 2))
bottom
right
(+ bottom pins-power))
(rect ’'NM left
bottom
(- (point-x power-point)
(/up (pad-class-width) 2))
(+ bottom pins-power))
(rect ’NM left
bottom

A A o
R S RS

. " - . T S RO N
'ﬂ"-l".\',‘-‘.".\‘.‘. .0';‘.0,‘.1‘.0.'.‘.“‘, OO N WM N W N R KM AN X AT Y ORI M M R et i e Ve

T PP N T O P L T A YR LT C A LA Y UMY RN A X REANALY N P i (AN ML W N Mo SURNU WU WC WG W 9. 828 Bk B (X

(+ left pins-power)
top)))
((is-point-left? power-point)
(merge
(rect ’'NM left
(- top pins-power)
Tight
top)
(rect ’NM (- right pins-power)
. bottom
right
top)
(rect 'NM left
bottom
right
(+ bottom pins-power))
(rect ’NM left
bottom
(+ left pins-power)
(- (point-y power-~point)
(/up (pad-class-width) 2)))
(rect ’'NM left
(+ (point-y power-point)
(/up (pad-class-width) 2))
(+ left pins-power)
top)))))))))

(def extend-right
(lambda (pins intended-right)
(let ((maximum-number-pins-horizontally
(/ intended-right (pad-class-width)))
(number-pins-per-side
(/up (slash-alpha pins O (function max)
(function pin-pin-number))
3)))

(cond

((<= number-pins-per-side maximum-number-pins-horizontally)
intended-right)

(t (* (pad-class-width) number-pins-pes-side’)))))

(def extend-top
(lambda (pins intended-top)
(let ((maximum-number-pins-vertically
(/ intended-top (pad-class-width)))
(number-pins-per-side
(/up (slash-alpha pins 0 (function max)
(function pin-pin-number))
3

(cond

((<= number-pins-per-side maximum-number-pins-vertically)
intended-top)

(t (* (pad-class-~width) number-pins-per-side))))))

- o ¥ T ANS NE NS LY T el Vel O A Wyl '-'-‘1"-‘-.'\"'-\'\._‘l-'-.'--'i"-"i."-"v
X O R R l.\"a,"l.".l.".l“.h. WA Y RGN SO -‘-‘ln.c. R ,nl.c." VN, PPN oL

-~

N

.

2 s ga’ 2% 42% 8a% la! & fat_gar B¢ 5 gpt et ot @2t €av
PR T S T T T I R R WU I PSR T WA W WV fatola®. | iy W Wy W P W w0 W L W

o

o
Y

’

(def pins-dimensions b,
(lambda (pins pins-power ring-width intended-right intended-top’ ‘A
(let ((maximum-number-pins-horizontally 0,
(/ intended-right (pad-class-width))) :;
(maximum-number-pins-vertically A

(/ intended-top (pad-class-width))) ’
(number-pins-per-side B!

(/up (slash-alpha pins 0 (function max) }5
(function pin-pir-number)) *N

3))) !

(cond Nl

((and (<= number-pins-per-side
maximum-number-pins-horizontally) »
(<= number-pins-per-side 4
maximum-number-pins-vertically)) st
(make-dimensions <
number-pins-per-side x
(+ intended-top (ring-width-top ring-width))

(side-extension ’'top pins number-pins-per-side hey
pins-power)) 3G
(+ intended-right (ring-width-right ring-width) X
(side-extension ’right pins number-pins-per-side e}
pins-power)) o

(- 0 (ring-width-bottom ring-width)
(side-extension ’bottom pins number-pins-per-side Ny
pins-power)) N
(- 0 (ring-width-left ring-width))
(side-extension ’left pins number-pins-per-side ﬂ
pins-power)))) M

((<= number-pins-per-side maximum-number-pins-horizontally)

(make~dimensions)Y
number-pins-per-side . .ﬁ
(+ (* (pad-class-width) number-pins-per-side) .

(ring-width-top ring-width)
(side-extension ’top pins number-pins-per-side n
pins-power))
(+ intended-right (ring-width-right ring-width) e
(side-extension ’right pins number-pins-per-side g
pins-power)) t}
(- 0 (ring-width-bottom ring-width) Y

(side-extension ’bottom pins number-pins-per-side w

pins-power)))

(- 0 (ring-width-left ring-width) Y
(side-extension ’'left pins number-pins-per-side

pins-power)))) »

((<= number-pins-per-side maximum-number-pins-verticallv) N,

(make-dimensions A

number-pins-per-side

(+ intended-top (ring-width-top ring-width) R

(side-extension ’top pins number-pins-per-side e

pins-power)) .

(+ (* (pad-class-width) number-pins-per-side) : e
(ring-width-right ring-width) by
(side-extension ’'right pins number-pins-per-side »

3

126 "

T N O T T A R L R R R R R U N AN N N U RN YL . R L RN AR NN N RARNI YR TOR g P W W IV ¥

)

pins-powver)) W

(- 0 (ring-width-bottom ring-width))
(side-extension ’bottom pins number-pins-per-side o

pins-power))
(- 0 (ring-width-left ring-width)
(side-extension ’left pins number-pins-per-side

T A

pins-power)))) \

(t e

(make~dimensions 'ﬁ

number-pins-per-side !

(+ (* (pad-class-width) number-pins-per-side) -

(ring-width-top ring-width) %

(side-extension ’top pins number-pins-per-side 'N

pins-power)))

(+ (* (pad-class-width) number-pins-per-side) Y

(ring-width-right ring-width) ‘
(side-extension ’right pins number-pins-per-side

pins-power)) o

“? 3

(ring-width~bottom ring-width) b

(side-extension ’bottom pins number-pins-per-side Am‘

pins-power)) o

(-0 ‘

(ring-width-left ring-width)

(side-extension ’left pins number-pins-per-side Nyt

pins-power)))))))) &

U

(def pin-height ﬂ

(lambda (pin power)
(+ power

(pad-class-basic-height) §

power J

(pad-basic-extension (pin-pad pin))))) 'df

"

(declare (special side number-pins-per-side power))

(def side-extension
(lambda (side pins number-pins-per-side power)
(slash-alpha
(such-that
pins
(lambda (pin)
(cond
((eq side ’top)
(<= (pin-pin-number pin) number-pins-per-side))
((eq side ’right)
(and (> (pin-pin-number pin) number-pins-per-side)
(<= (pin-pin-number pin)
(* 2 number-pins-per-side))))
((eq side ’bottom)
(and (> (pin-pin-number pin)
(* 2 number-pins-per-side)) =
(<= (pin-pin-number pin))

127 gg
L
s
<]

h 8

DAL T 2] rReR ™

AWY P LAY V Y/ U L H L MWV - Lalty v alis . J
b
o
(* 3 number-pins-per-side)))) 1'
((eq side ’left) (> (pin-pin-number pin) y
(* 3 number-pins-per-side)))))) o
(+ pover (pad-class-basic-height) power 3) >
(function max) >,
(lambda (pin) (pin-height pin power))))) »
(declare (unspecial side number-pins-per-side power)) ‘ s%
\
(def place-pins) ﬂ:
(lambda (pins dimensions power) 2
(cond ((null pins) (null-item))
(t (merge (place-pin (car pins) dimensions power) o
(place-pins (cdr pins) dimensions power)))))) -ﬁ
s

(def place-pin 3
(lambda (pin dimensions power) !
(let ((number-pins-per-side

(dimensions-number-pins-per~side dimensions)) !ﬂ
(top (dimensions-top dimensions)) e
(right (dimensions-right dimensions)) b
(bottom (dimensions-bottom dimensions)) W
(left (dimensions-left dimensions)) '$
(pin-number (pin-pin-number pin))) »
(cond ((<= pin-number number-pins-per-side) K
(move (mirrorx (layout-pad (pin-pad pin) power ’top)) o
(* (pad~class-width) (i~ pin-number)) o
top)) ¥
((<= pin-number (* 2 number-pins-per-side)) ’ g@
(move (rotccw (layout-pad (pin-pad pin) power ’right)) ‘
right Ly
(* (pad-class-width) . N
(= (* 2 number-pins-per-side) pin-number)))) ﬁ
((<= pin-number (* 3 number-pins-per-side)) {ﬁ
(move (layout-pad (pin-pad pin) power ’bottom) N
(* (pad-class-width) t
(- (* 3 number-pins-per-side) pin-number)) o3
bottom)))
((<= pin-number (* 4 number-pins-per-side)) o
(move (rotccw (mirrorx (layout-pad (pin-pad pin) »
power ’'left))) -
ileft '
(= (pad-class-width) W,
(- pin-number :k
(* 3 number-pins-per-side) 1)))))))) 2&
wW
(def /up K‘
(lambda (x y)
(cond ((equal x (times y (fix (quotient x y)))) by
(fix (quotient x y))) N
(t (1+ (fix (quotient x y))))))) Ny
;i;the following routines must be changed when adding new pad &‘
classes b
i
0y .»
128 .
&
.'l
2
'-
x

. , oot AN T T L P R R L T g R i R R A S A St S SRR AN
S50, i.‘!"h",l,‘.h' (o A M W Ml .'u LU AU O A A, iy’ N " .. \“ Y ¢ g o e SO o o = < L5

. - Chad BB o B B LR H Bt SRl s
RN A RN R R AR A R AR A A AV I AN KA O 3 Vol X RN EARKYR" Hah* 3 8l 4, b v d

(def pad-class
;3 16 Apr 87 J Harmon made pad20b the default pad file for all
;; minimum feature sizes except 250 centimicrons.
(lambda ()
(cond ((= (minimum-feature-size) 250) ’rinout)
(t ’pad20b))))

(def pad-class-default-power-bus-width
. (lambda ()
(cond ((eq (pad-class) ’rinout) 16)
((eq (pad-class) ’pad20b) 8))))

(def pad-class-basic-height
(lambda ()
(cond ((eq (pad-class) ’rinout) 82)
((eq (pad-class) ’pad20b) 112))))

(def pad-class-width
(lambda ()
(cond ((eq (pad-class) ’rinout) 100)
((eq (pad-class) ’pad20b) 128))))

(def pad-conductivity
(lambda (pad)
(cond ((eq (pad-class) ’rinout)

(cond ((is-pad-blank? pad) 0.0)
((is-pad-input? pad) 1.66666)
((is-pad-output4? pad) 0.31250)
((is-pad-output8? pad) 0.31250)
((is-pad-tri-state4? pad) 0.15625)
((is-pad-tri-state8? pad) 0.15625)
((is-pad-i/o4? pad) 0.14285)
((is-pad-i/087 pad) 0.14285)
((is-pad-power? pad) 0.0)
((is-pad-ground? pad) 0.0)
((is-pad-phia? pad) 1.66666)
((is-pad-phib? pad) 1.66666)
((is-pad-phic? pad) 1.66666)))

((eq (pad-class) ’pad20b)

(cond ((is-pad-blank? pad) 0.0)
((is-pad-input? pad) 1.66666)
((is-pad-output4? pad) 0.31250)
((is-pad-output8? pad) 0.31250)
((is-pad-tri-state4? pad) 0.15625)
((is-pad-tri-state8? pad) 0.15625)
((is-pad-i/o47? pad) 0.14285)
((is-pad-i/o8? pad) 0.14285)
((is-pad-power? pad) 0.0)
((is-pad-ground? pad) 0.0)
((is-pad-phia? pad) 1.66666)
((is-pad-phib? pad) 1.66666)
((is-pad-phic? pad) 1.66666))))))

' ¥ - 00 o Py ‘ O ;
Tt et T T i I 0T e I e 1 0t W N B L A N M

2 3% 1
AR N

e

e

RANA

U YA 4
g0

RN

“y-
'.7-

tl.

EES

(def pad-basic-extension
(lambda (pad)
(cond ((eq (pad-class) ’rinout)

(cond ((is-pad-blank? pad) 3)
((is-pad-input? pad) 29)
((is-pad-output4? pad) 42)
((is-pad-output8? pad) 42)
((is-pad-tri-state4? pad) 67)
((is-pad-tri-state8? pad) 67)
((is-pad-i/o4? pad) 96)
((is~pad-i/o87? pad) 96)
((is-pad-power? pad) 3)
((is-pad-ground? pad) 3)
((is-pad-phia? pad) 29)
((is-pad-phib? pad) 29)
((is-pad-phic? pad) 29)))

((eq {pad-class) ’pad20b)

(cond ((is-pad-blank? pad) 3)
((is-pad-input? pad) 21)
((is-pad-output4? pad) 42)
((is-pad-output8? pad) 42)
((is-pad-tri-state4? pad) 67)
((is-pad-tri-state8? pad) 67)
((is~pad-i/o04? pad) 74)
((is-pad-i/087 pad) 74)
((is~pad-power? pad) 3)
((is-pad-ground? pad) 3)
((is~-pad-phia? pad) 21)
((is-pad-phib? pad) 21)
((is~pad-phic? pad) 21))))))

(def pad-transistor-count
(lambda (pad)
(cond ((eq (pad-class) ’rinout)

(cond ((is~pad-blank? pad) ’(0 0))
((is-pad-input? pad) ’(4 3))
((is-pad-output4? pad) ’'(6 4))
((is-pad-output8? pad) ’'(6 4))
((is-pad-tri-state4? pad) ’(11 5))
((is-pad-tri-state8? pad) ’(11 5))
((is-pad-i/o4? pad) ’(14 8))
((is-pad-i/087 pad) ’(14 8))
((is-pad-power? pad) '(0 0))
((is-pad-ground? pad) ’(0 0))
((is-pad-phia? pad) ’(4 3))
((is-pad-phib? pad) ’(4 3))
((is-pad-phic? pad) ’(4 3))))

((eq (pad-class) ’pad20b)

(cond ((is-pad-blank? pad) ’(0 0))
((is-pad-input? pad) ’(4 3))
((is-pad-output4? pad) ’(6 4))
((is-pad-output8? pad) '(6 4))
((is-pad-tri-state4? pad) ’(11 5))
((is-pad-tri-state8? pad) ’(1i1 5))

130

T RERLSE”

...... - n RSN
; d . WA) N Pl AL P W TR PCAE N AL
"-\':'t.:'o.‘.h N :‘a.-.q‘:'n‘. t‘.h".h‘.'s“,h P '!0‘ (M Y W Mt ') ..h -‘I‘"l S VS Y “ PRI At p ™ e P -)

FANICd

:

((is-pad-i/o4? pad) ’(14 8)) N
((is-pad-i/o87 pad) ’(14 8)) KN
((is-pad-power? pad) ’(0 0)) ¥y
((is-pad-ground? pad) ’(0 0)) W
((is-pad-phia? pad) ’(4 3)) L
((is-pad-phib? pad) ’(4 3)) .
((is-pad-phic? pad) ’(4 3))))))) s

¥

(def layout-pad .
. (l1ambda (pad power side)]
(cond 2
((eq (pad-class) -’rinout) by
(cond)
((is-pad-blank? pad) (null-item)) W
((is-pad-input? pad) &
(layout-rinout-input-pad o
pover (input-pad-name pad) (input-pad-in-wire pad) side)) .
((is-pad-output4? pad) ’“
(layout-rinout-output4-pad h
pover (output4-pad-name pad) (output4-pad-out-wire pad) side)) b
((is-pad~output8? pad) o8
(layout-~rinout-output8-pad "

pover (output8-pad-name pad) (output8-pad-out-wire pad) side))
((is-pad~tri-state4? pad)

(layout~rinout-tri~state4-pad :
power (tri-state4-pad-name pad) N
(tri~state4-pad-out-wire pad)
(tri-state4-pad-drive-wire pad) side))

((is-pad~tri-state8? pad) d

(layout~rinout-tri-state8-pad

power (tri-state8-pad-name pad) ﬁ
(tri-state8-pad-out-wire pad) W,
(tri-state8-pad-drive-wire pad) side)) *;
((is-pad-i/047? pad) te

(layout-rinout-i/o4-pad power (i/o4-pad-name pad)
(i/04-pad-in-wire pad)
(i/04-pad-out-wire pad) 0
(i/04-pad-drive-wire pad) side))
((is-pad-i/087 pad) N
(layout-rinout-i/o8-pad power (i/o8-pad-name pad))
(i/08-pad-in-wire pad) ;
(i/08-pad-out-wire pad) .
(i/08-pad-drive-wire pad) side)) 4
((is-pad-power? pad)
(layout-rinout-power-pad power side))
((is-pad-ground? pad)
(layout-rinout-ground-pad power side))
((is-pad-phia? pad) -
(layout-rinout-phia-pad power (make-phia-wire) side)) .
((is-pad-phib? pad)
(layout-rinout-phib-pad power (make-phib-wire) side)) !
((is-pad-phic? pad) \
(layout-rinout-phic-pad power (make-phic-wire) side)))) &
((eq (pad-class) ’pad20b) '

-

TS

131 !

[4 N d) ' h » C® (M) WP W "y W P " ‘ .‘
';!"\“‘l.““i C‘ﬂ‘)';,‘".? ",?0‘.?1'0'.0"?!‘c"l.ltl'q.l’l_l.o.l’g_l'._l‘.,l'p’l"_l'oﬁ‘ l.'"l?“i’l’..l...I.,.O‘n,l (] i'»."..l'p'ﬂ'n..l.‘ a‘..l‘._l'a AR .o’l'u.i'- WA) ‘l,l‘;.‘\ AR K ‘0 l‘v (8

T R R T R R A Y I R R AR AR ORI R RO B Va0 Gl OB MV A 8t R ek AR AR 'Y, KRR RN

W,
(]
Y
(cond .-,,
((is~pad-blank? pad) (null-item)) o
((is~pad-input? pad) K
(layout-pad20b-input-pad ol
pover (input-pad-name pad) (input-pad-in-wire pad) side)) gﬂ
((is~pad-output4? pad) -
(layout-pad20b-output4-pad O
power (output4-pad-name pad) "
(output4-pad-out-wire pad) side)) o
((is-pad-output8? pad) H
(layout-pad20b-output8-pad B
pover (output8-pad-name pad) (output8-pad-out-wire pad) side)) -
((is-pad-tri-state4? pad) %
(layout-pad20b-tri~state4-pad s4
power ﬂt
(tri-state4-pad-name pad) o
(tri-state4-pad-out-wire pad) ﬁ
(tri-state4-pad-drive-wire pad) side)) ‘
((is-pad-tri-state8? pad) s
(layout-pad20b-tri-state8-pad ?{
power (tri-state8-pad-name pad) Q?
(tri-state8-pad-out-wire pad) 0
(tri-state8-pad-drive-wire pad) side)) o
((is-pad-1i/047? pad) >
(layout-pad20b-i/o4-pad power (i/o4-pad-name pad) Rt
(i/04-pad-in-wire pad) 4
(1/04-pad-out-wire pad) v
(i/o4-pad-drive-wire pad) side)) v
((is-pad-i/o08? pad) s
(layout-pad20b-i/o8-pad power (i/o8-pad-name pad) b
(i/08-pad-in-wire pad) g
(i/08-pad-out-wire pad) A
(i/08-pad-drive-wire pad) side)) A
((is-pad-power? pad) o8
(layout-pad20b-power-pad power side)) xﬁ
((is-pad-ground? pad) ’
(layout-pad20b-ground-pad power side)))
((is-pad-phia? pad) 2y
(layout-pad20b-phia-pad power (make-phia-wire) side)))
((is-pad-phib? pad) s
(layout-pad20b-phib-pad power (make-phib-wire) side)) &
((is-pad-phic? pad))
(layout-pad20b-phic-pad power (make-phic-wire) side))))))) X
)
o
vy,
i

AR LY A - ", ~ n,\ "~ A - - q - P ‘
'~'t“‘~‘.'-‘,.‘;‘-'|‘..*c'.'.'s?.'s..':‘.'\..‘o?.'l?.‘n‘.'-,‘.'n?.'a‘,.'é-‘-. N NN .-'O.o.i,a'tth.t‘\ K t“ U M0 M M M MO Ml MO K) \"’. \"A MO MY P X g N .l",l, NaX

Y R U I R N TR R R W D PR NN RN SO YU TR YU PO VO YU VO O PO WU U U R PO PO PO ™ U PR TR

e T A

APPENDIX B ¢

-~ - o
d

. MONTEREY FUNCTIONS

This Appendix contains all the new functions. as well as. altered MacPitt~" tie- »

P

rions that play a role in the new pad router and pad placement process. Conenrs 3

are identified by a leading semicolon and capital letters. They pertain to the code

-

unmediately after the comment.

; FUNCTION RESPONSIBLE FOR ASSIGNING DATA-PATH TERMINALS
‘ ; TO CONNECT TO PADS THRQUGH EITHER THE LEFT OR RIGHT
¥ ; SIDES. THE ORIGINAL FUNCTION LACKED THE CONDITIONAL

. ; STATEMENT. ALL POINTS WERE SENT THROUGH THE LEFT SIDE
; BY MAKE-LEFT-TIP

(def get-basic-buses-from-port-output-unit ‘
(lambda (number-of-units tail unit unit-number)
(update-basic-buses
(update-basic-buses
tail
(make-port-output-id (port-output-unit-name unit))
(cond
((> unit-number (/ number-of-units 2)) (make-right-tip))
(t (make-left-tip))))
(make-port-output-id (port-output-unit-name unit)) $
(make-output-tip unit-number))))

-

o W
. -

e

o o,

)

; TOP LEVEL OF LAYOUT ROUTINES ’

(declare (special gates top-part))

NNy]

(def layout-object :
(lambda (object) !

. o

D

(prog (definitions flags data-path control pins gates straps f
R conductivity power data-path-length control-length)
- flags-length top-width bottom-width data-path-layout v
i control-layout flags-layout river-layout wing-layout '

skeleton-layout internal-layout pins-layout ring-layout
: : layout nets ring-width top-part bottom-part top-bank
bottom-bank river-width bottom-part-river-points
intended-right intended-top extended-right extended-top)
(setq definitions (object-definitions object)) B
(setq flags (object-flags object)) b
(setq data-path (object-data-path object))

L P

133)

» e A e o W -

¥
L]
¥

g J
‘ . ; ANAN » T o A T v\ < g
R S S OO OO ML T MO AN R e A X Ot e h A M 8 N N S D Tt Y G e, PN I

(setq control (object-control object))
(setq pins (object-pins object))
(herald "Extruding gates")
(setq gates (extrude-gates control flags))
(statistic (concat "Control has " (length gates) " columns"))
(cond ((member? ’opt~c option-list)
(setq gates
(nthelem-1list
(nrder (extrude-basic-straps gates)
gates
(count (length gates))
(function junction-gate-number)
(flambda (basic-strap) basic-strap)
(flambda (gatel gate2)
(gate-before? gatel gate2 gates))
(flambda (gatel gate2)
(gate-after? gatel gate2 gates)))

gates))))
(setq gates (insert-nor-ground-lines gates))
(herald "Extruding straps")
(setq straps (extrude-straps gates))
(statistic
(concat “Circuit has "
(slash-alpha
(list (flags-transistor-count flags)
(data-path-transistor-count data-path
definitions)
(control-transistor-count gates straps)
(pins-transistor-count pins))
0
(function +)
(flambda (x) (+ (car x) (cadr x))))
" transistors"))
(statistic
(concat "Control has "
(slash-alpha straps O (function max)
(function strap-track-number))
" tracks"))
(setq conductivity (plus (data-path-conductivity data-path
definitions)
(control-conductivity gates straps)
(flags-conductivity flags)))
(setq power (conductivity-to-power-bus-width conductivity 11))
(statistic (concat "Power consumption is "
(conductivity-to-power-consumption
(plus conductivity
(pins-conductivity pins)))
" Watts"))
(setq data-path-length -
(max (data-path-required-length data-path definitions)
4))
(setq control-length (control-required-length gates))
(setq flags-length (max (flags-required-length flags power)
4))

134

A 1 n P O 'Y L L] W T W ® » » !
"-'l"')? ‘.l!“n‘i't‘ﬁ'l‘"!‘l‘l?"n‘".,.‘Q.,."!l’l...i".l".cl'l‘_‘ ;"'n’l’:?l’;‘d'p‘l'o‘l‘a,4.0.0‘- l'g.l'p‘l‘.‘l’. o..‘l‘: Wy, l‘all...l';.l.- I\.l‘a) u..'., ‘n '» 'l"‘b..\v .l. ‘0. .O. l("L".-“ﬂ.“l.“l.‘ L R

R AT IR A IR WU SR R WU W UV WL WU L WU W LT o T R G T W WU MU WA TR TV T WM PO RSO TAN LA Tt

.!‘I

o

X
(setq top-width (max (data-path-required-width ¢$
data-path power definitions) o

(flags-required-width flags power))) 1

(setq bottom-width (control-required-width straps)) ﬁ
(herald "Laying out data-path") Ot
(setq data-path~layout ’
(layout-data-path data-path power oy
top-width definitions)) "
‘h-rald "Laying out control") .
(setq control-layout (layout-control gates straps {
power bottom-width)) ol

(herald "Laying out flags") =
(setq flags-layout (layout-flags flags power top-width)) e
(herald "Laying out river") >
(setq top-part &
(merge (move data-path-layout (+ power 3) 0) A
(move flags-layout (+ power 3 data-path-length p'

3 power 3) 0))))

(setq bottom-part N
(move control-layout (+ power 3) (- power 4))) "

(setq bottom-part-river-points m
(find-attributes bottom-part ’(river))) W,

(setq top-bank *
(sort (alpha (flambda »
(point) !
(point-x (find top-part g

(point-name point)))) s
bottom-part-river-points) .}
(function «))) il

(setq bottom-bank
(sort (alpha (function point-x)
bottom-part-river-points) !

(function <))) .%
(setq river-width et
(+ (river-span ’NP 2 top-bank bottom-bank) b
(wing-span bottom-part) -
(- 4 power))) ot
(setq intended-top]
(+ power bottom-width power river-width (driver-width) "
pover top-width power 3 power)) 'k

(setq intended-right v

(+ power 3 (max control-length ’
(+ data-path-length 3 3
power 3 flags-length)) ﬁ
3 power)) :
(setq river-layout o\
(river ’NP 2 (wing-span bottom-part) top-bank bottom-bank)) W
(herald "Laying out wing") -
(setq wing-layout W
(layout-wing (sort (find-attributes bottom-part ’(wing)) 53
(flambda (pointi point2) N

(< (point-x pointl) >

(point-x point2)))))) Y

(herald "Laying out skeleton") '
ag!
';
135 N
3.
b
N
h J

C N

B I S R G IO O A AN O e RN O DA DA D IR RN A A K N S S T AT A DRI S NN

copt kg s ofy A'a s%a $7a f'p 40 #O4 §" bl b a0 e B Ae® Mot Bl 2V 2% GaP 3¢ Rk BV Bt 9.7 gt Bat 0.0 a0 et 0 Wi B e

(setq skeleton-layout
(layout-skeleton power intended-top intended-right
data-path-length bottom-width
river-width))
(setq internal-layout
(merge
(move top-part 0
(+ power bottom-width power river-width
(driver-width) power))
bottcm-part
(move (rotcw river-layout) 0
(+ pover bottom-width power
river-width))

(move wing-layout 0
(+ pover bottom-width 4))
skeleton-layout))
(herald "Laying out pins")
(setq pins-layout
(layout-pins pins

top-part)
bottom-part &v
power ’%«
intended-right ot
intended-~top

(make-ring-width 0 0 0 0) R
(lookup-logo definitions))) 4{
oy
; IF NOT SUFFICIENT SPACE TO ACCCMMODATE NUMBER OF PADS; 13
; SPECIFIED BY NUMBER-PADS-PER-SIDE, EXTEND HORIZONTAL) ?ﬁ
; DIMENSION UNTIL THEY FIT. h
(setq extended-right (extend-right pins intended-right *]
intended-top)) S
Ahﬁ
; IF NOT SUFFICIENT SPACE TO ACCOMMODATE NUMBER OF PADS; Mﬁ
; SPECIFIED BY NUMBER-PADS-PER-SIDE, EXTEND VERTICAL o

; DIMENSION UNTIL THEY FIT. "
(setq extended-top (extend-top pins intended-top extended-)
right)) ’
N
; CALCULATES CHANNEL WIDTHS FCR EACH OF THE FOUR SEGMENTS el
; OF THE PAD ROUTER ROUTING REGIONS o

(setq ring-width

®
(get-ring-width (merge internal-layout pins-layout) 9
extended-right extended-top)) \
; SECOND PASS THRU LAYOUT-PINS DIFFERS FROM FIRST IN THAT :f‘
; CORRECT RING-WIDTHS ARE AVAILABLE gr

(setq pins-~layout

(layout-pins pins SN
top-part e

bottom-part :;
power) ﬁ*}
intended-right g

intended-top

e,
%|
136 R
W
N
ﬂw

o
]
. S
:‘:-"Jr“n‘.":‘."J...c-‘...l‘!‘ﬂ‘\’4'2\‘?’1'?.1.!’!’!.1.’!‘! l‘e‘l’. .| n. t 'nn“...l.o.. .V, ‘ N 0""‘ ,l '0"! . ‘ A v 0 Lo .‘, - h ; ! N TN

[IRTLN LR R

ring-width

(lookup-logo definitions)))

; EXTRACT NET-LISTS FOR NETS THAT CONNECT TO LEFT SIDE

; OF CIRCUIT
(setq left-ring-nets

(append (list (sort-y
(get-nets
{a2ppend

(00 0 0)

(list (mapcar

'car
(extract-basic-nets

e

internal-layout))))

: (Left)))

(l1ist (prep-pad-bank pins-layout ’left))))

. ; EXTRACT NET-LISTS FOR PADS THAT COKNECT TO RIGHT SIDE

K ; OF CIRCUIT.
4 (setq right-ring-nets

(append (1list (sort-y
(get-nets

(append

e

(0 0 00)
(1ist (mapcar

*car
(extract-basic-nets

internal-layout))))

»(right)))

(setq ring-layout
(moat left-ring-nets
right-ring-nets
'NM
4
ring-width))

PO T T N

o e
s

(setq layout

P

; PRODUCES LAYQUT OF NETS BETWEEN CIRCUIT AND PADS.

(1ist (prep-pad-bank pins-layout ’right))))

(first-quadrant (merge internal-layout pins-layout

o S

" mm by

g e

1" mm"))
(return layout))))

e i g

.~ e
LS

K
K
&

i ‘ LK AL " Ly O -
SOOI OO OSOOUDOTIGOOCTODAICROC K KIS N X = T RN B .0.“‘0 0

ring-layout)))

(statistic (concat "Dimensions are "
;;jh replaced minimum-feature-size with lambda-spacing.
(quotient (times (right layout)

(lambda-spacing))

100000.0)

(quotient (times (top layout)

(lambda -spacing))

100000.0)

137

-

s iy

5" .)- -8 0. ’\ ",ﬁ" ,T X

KW T A S ALY R AT
. -’ 5 ¥ 5 ||

o p >

-, W

- ey

e~

- P e

8

3 Y ; - P - p e X i "Ry A3 V0 N M
RIS ONOOOUGLO OO NS ML IO ROGUODOLOUTIOO KO MOUDUOOOIN KL MK I KR X U M P N R Y AU L

(declare (unspecial gates top-part))

; TOP LEVEL OF PAD LAYOUT ROUTINES
(defsymbol layout-pins (pins top-part bottom-part power
intended-right intended-top
ring~-width logo)
(let ((extended-right (extend-right pins intended-right
intended-top)))
(let ((extended-top (extend-top pins intended-top
extended-right)))

; CALCULATE WIDTH OF PAD POWER AND GROUND SUPPLY RAILS.
(let ((pins-power (conductivity-to-power-bus-width
(pins-conductivity pins)
(pad-class-default-power-bus-width))))

; DEVELOPS LIST THAT SPECIFY PAD LOCATION.
(let ((pin-net (arrange-pins pins (extract-internal-nets
top-part)
extended-top
extended-right)))

; CALCULATES OUTER CHIP COORDINATES FOR ALL FQUR SIDES.
; RESULTS IN A FOUR NUMBER LIST.

(let ((dimensions (pins-dimensions (cadr pin-net) pins
pins-power ring-width
extended-right
extended-top)))

(let ((top (dimensions-top dimensions))
(right (dimensions-right dimensions))
(left (dimensions-left dimensions))
(bottom (dimensions-bottom dimensions)))

; PRODUCES RING OF PADS.
(let ((pins-layout (place-pins (cadr pin-net) dimensions
pins-power)))
(let ((power-point (find pins-layout ’(power)))
(ground-point (find pins-layout ’(ground))))
(merge (cond ((member? ’logo option-list)
(move (first-quadrant
(title logo NM ’nonie.r.10))
(+ left pins-power 3)
(+ bottom pins-power 3)))
(t (null-item)))
pins-layout

; PRODUCES POWER SUPPLY RAIL FOR PADS.
(layout-power-ring pins-power power dimensions
extended~right extended-top
power-point ground-point)

; PRODUCES GROUND SUPPLY RAIL FOR PADS.
(layout-ground-ring pins-power power dimensions

138

v
’

- -

T S A

§ ;A’.k,‘.’ ,““ . ‘?’-",'\.’,‘J‘-

;“Ig‘ In.','n"..o h l'..-‘!lu '

extended-right extended-top
power-point ground-point

(car pin-net))))))))))))

; IF PADS DO NOT FIT ARQUND CURRENT CIRCUIT DIMENSIONS,
; AND INTENDED-RIGHT > EXTENDED-TOP, INCREASE EXTEND-TOP
; UNTIL ALL PADS FIT.
(def extend-right
(lambda (pins intended-right intended-top)
(cond
((< (length pins) (* 2 (+ (fix (/ intended-top
(pad-class=-width)))
(fix (/ intended-right

(pad-class~-width))))))
intended-right)

(t
(cond
((< intended-right intended-top) intended-right)
(t (» (fix (/ (1+ (- (length pins)
(» 2 (fix (/ 1ntended -top

(pad-class=-width))))))
2))
(pad-class-width))))))))

; IF PADS DO NOT FIT AROUND CURRENT CIRCUIT DIMENSIONS, AND
; INTENDED-TOP > EXTENDED~RIGHT, INCREASE EXTENDED-TOP
; UNTIL ALL PADS FIT.
(def extend-top
(lambda (pins intended-top extended-right)
(cond
((< (length pins) (* 2 (+ (fix (/ intended-top
(pad-class-width)))
(fix (/ extended-right

(pad-class-width))))))
intended-top)

(t
(cond
((<= intended-top extended-right) intended-top)
(¢t (« (fix (/ (1+ (- (length pins)
(* 2 (fix (/ extended-right

(pad-class-width))))))
2))
(pad-class-width))))))))

; EXTRACTION COF DATA FOR PAD PLACEMENT

; RESULTS IN A LIST CONSISTING OF TWO LISTS. THE FIRST
; LIST INCLUDES ALL NET POINTS THAT ARE ON THE LEFT SIDE OF
; THE INTERNAL CIRCUIT AND CONNECT TO PADS. THE SECOND
; LIST CONTAINS ALL SUCH POINTS ON THE RIGHT SIDE. POINTS
; ON BOTH LISTS ARE ORDERED BY THEIR Y~-COORDINATES.

(def extract internal-nets

(lambda (top-part)

139

................

U WAL AT WAL W) W WL, W, ‘h alg aes ol g mfl o : il 4 "

‘o) H‘ i{\ 4 f 0 W) \f“_f q-‘l".f J"'lf'{d" Vl"

. - -]
AERIANS

o

= - b]
MY - -

4

-

W

~ 4 N - ‘a8 R* s B0 Rtg” W ab NAN ‘af."2f %Al o} o 4 @A aba-aVA aEs o AR bat i v ey i B Gay o -
RN RN U WL U ST PUVOUWAX UMK R L Y g U

(append (list (append (excise-port-drive :
(extract-names wing-layout)()) :

" (sort-by-y (get-nets top-part ’(left)) %
g O))]
K (1ist (sort-by-y (get-mets top-part ’(right)) ())))))

; TAKES A LIST OF POINTS AND RETURNS THE SAME LIST SORTED
; BY THEIR Y-COORDINATES :
(def sort-by-y
(lambda (list sorted-list) . 4
- (cond
: ((null list) sorted-list)
(t (sort-by-y1 (car list) (cdr list) list sorted-list)))))

oo . -

- -
-

-

(def sort-by-yl1

(lambda (thing 1 list sorted-list)]
(cond ;
((null 1) (sort-by-y (excise thing list)

(append sorted-list (caar thing))))

((> (point-y (car thing)) (point-y (caar 1)))

. (sort-by-y1 (car 1) (cdr 1) list sorted-list))

g (t (sort-by-yi thing (cdr 1) list sorted-list)))))

©

.
et

- e

; REMOVES POINTS WITH THE NAME PORT-DRIVE FROM A LIST COF

N ; POINTS. PORT-DRIVE IS THE NAME GIVEN TO THE SIGNAL THAT s
b ; CONTROLS TRI-STATE PADS. N
N (def excise-port-drive {
¥ (lambda (list new-list) \
! (cond 3
((null list) new-list) 7
; ((equal (caaar list) ’port-drive) '
. (excise-port-drive (ecdr list) new-list)) :
‘ (t (excise-port-drive (cdr list) (append new-list)
2 (car list))))))) '
:)
; MAKES A LIST OF THE POINT NAMES OF ALL POINTS IN A LIST ‘
s ; WITH THE ATTRIBUTE ‘RING’. THIS ATTRIBUTE IDENTIFIES
v ; POINTS INVOLVED IN PAD ROUTING.)
R (def extract-names X
) (lambda (item) : ,
K (append)
A (setify (alpha (function point-name)
by (find-attributes item ’(ring)))))))
“ &
¢ ; GIVEN A LIST OF NET NAMES, IT EXTRACTS EVERY OCCURRENCE)
2 ; OF THOSE POINTS FROM A LIST OF POINTS. ;
k> (def get-nets
2 (lambda (list side)
7 (get-netsl list (get-names list side) ()))))
L) §
‘.
ﬁ (def get-netsl! :
K (lambda (list net-names output) !
A (cond
> ({null net-names) output)
I .
o ¥ \
‘; 140 y
"l : 1
: :
; :
s) » T N I T N R Y R LAY UL S
T T L R YO AT Y R e o T WL e e N N e e

FITUICITIUN IUL RN ST IO SN a0t R g, O MANARN R NAN, A W T U MU RN Q P Y

"
o
W
»
(t (get-netsl list ih,
(cdr net-names)
(append output [
(list (find-all list r!
(car net-names))))))))) .‘
; EXTRACTS NAMES OF POINTS HAVING A SPECIFIED ATTRIBUTE. :¢
; IN THIS INSTANCE THE ATTRIBUTE COULD BE ‘LEFT’ OR ﬁf
; ‘RIGHT . o
(def get-names)
(lambda (item side) o
(setify (alpha (function point-name) by
(find-attributes (get-ring-net item) side))))) ;b
O4
; EXTRACTS EVERY POINT WITH THE ATTRIBUTE ‘RING’ FROM :
; A LIST QF POINTS. F§
(def get-ring-net !
(lambda (item)
(get-ring-netl item !
(extract-names item) W
D) $
(def get-ring-netl gﬁ
(lambda (item name-list internal-connections)
(cond +19
((null name-list) (append B!
’(nil nil nil nil) \
(1ist internal-connections))) !
(t '
(get-ring-netl item ’
(cdr name-list) N
(append internal-connections .&
(find-all item (car name-list)))))))) J&
o)
; PIN PLACEMENT ’
q
; USING THE INFORMATION PROVIDED BY EXTRACT-INTERNAL-NETS, f
; ARRANGE-PINS CONSTRUCTS A LIST THAT SPECIFIES PAD)
; LOCATIONS. 1IT FIRST TRIES TO MINIMIZE CHIP AREA BY o
; PLACING PADS IN THE LEAST NUMBER OF SIDES. THEN, IT bt
; COMBINES THE LIST OF POINTS FROM EXTRACT-INTERNAL-NETS
; WITH THE CLOCK, POWER AND GROUND-PADS. i

(def arrange-pins
(lambda (pins sorted-pins extended-top extended-right)
(let ((left (car sorted-pins))
(right (cadr sorted-pins)))
(merge-common-side-lists
- (cond
((>= (* extended-right 2)
(* (pad-class-width) (+ 5 (length left)
) (length right))))
(append (list 2)
(1ist (order-pins pins

141

A WA on NP
OGO MO NN RONN L AN AR A SRUA R EI T o

(make-top-and-bottom-pin-lists
(reverse left)

¢ right \

b ’((phic) (phib) (phia))]

! (- (length left) (length right))))))))
(t

: (cond

((>= (+ extended-top extended-top extended-right)
(* (pad-class-width) (+ 5 (length left)
(length right))))

n (append (list 3)
f (1ist (order-pins pins
(append (pre-number-pins !
(order-left left nil;
() ’left) ’
(pre-number-pins
(order-right right
nil)
() ’right)))))) :
((>= (* 2 (+ extended-top extended-right)) i
(* (pad-class-width) (length pins)))
(append (list 4)
(list (order-pins pins ’

S

.
-

e e
o

(append

Y (pre-number-pins !
P (order-left)
3 (append left ‘
) ’((phia) (phib) . M
9 (phic))) \
" 'set)
. O ’left)
W, (- b -
¢ pre-number-pins
‘ (order-right 4
v (append ’((power)) right ;
o »((ground)))
1

’set)
' 0O ’right)))))))))))))

Pt
-

; MERGES LISTS PERTAINING TO THE SAME SIDE. FOR EXAMPLE:
; (CC...1) (...2) TOP) ((...3) (...4) TOP)) WOULD RESULT IN
; (Coo.1) (...2) (...3) (...4) TOP). THE FUNCTION FINDS

; WHICH LI3TS TO MERGE BASED ON THE NUMBER OF SIDES SLATED
; FOR PAD PLACEMENT. WITH THIS INFORMATION, THE FUNCTION

; KNOWS WHERE IN THE NET LIST THE INDIVIDUAL LIST SEGMENTS b
; ARE LOCATED. (LENGTH (CADR NETS)) RETURNS THE NUMBER OF ;
; PAD LISTS IN THE LIST. SINCE THE LIST IS OF FORM: :
; (NIL NIL NIL NIL NIL NIL NIL (.. TOP) (.. RIGHT)...),

0 ; A VALUE QF 7 INDICATES NQO PIN-LISTS. \
i\ (def merge-common-side-lists |
i (lambda (nets) :
N (cond . ;
ﬁ ((= (car nets) 3) ;(CAR NETS) = NUMBER OF SIDES PINS ARE

LOCATED

142

iy

s # » oy g T I Che
‘i":él kl'u.l‘a’& » 4':!’;‘ u.t‘n’i s Vst Sty 'd"" *

” ,',": '-!"-.'" -I-‘l,-'rn.‘_\._:*-'-’v'.\l-' "#‘ '('—‘.\'"-(“-'_‘-'-“N)‘;'.“f—'f-'ﬂ" .-‘f"f‘ > . '\‘.\
AL S Nt X P Aah L. W0 1. 00 W0 We L P Uy T 0 PR 07 T T W Wi T,

)

B N <gu e OXTS
PR 4 " sy T UNL WL IR AR AT O] “Bat Ra¥ 82 B0 + Ay U N o P LR &.54) wan) - ~ N . Va k¥ 5 & TN +
Cog g et 2 3 a2 2

(cond

((= (length (cadr nets)) 11) ;7=NIL 4 ACTUAL PIN-LISTS
(merge-side-lists nets ’top))
(t nets)))
(t
(cond
((= (length (cadr nets)) 13) ;7=NIL 6 ACTUAL PIN_LISTS
(merge-top-and-bottom-lists nets))
((= (length (cadr nets)) 12) ;7=NIL 5 ACTUAL PIN_LISTS

(merge-top-or-bottom-lists nets))

(t nets))))))

; MERGES LISTS IN A LIST WITH THE SAME ‘SIDE’ ATTRIBUTE. \

(def merge-side-lists .

(lambda (item side) y

(append (list (car item)) >
(1ist (append (find-net (cadr item) side)

(delete-net-lists (cadr item) side ()))))))

.“
Wi
; USED WHEN PADS ARE PLACED ON THE TOP AND BOTTOM ONLY. ﬁ
(def merge-top-and-bottom-lists i
(lambda (item) iy
(append (list (car item)) .
(list (append (find-net (cadr item) ’top) E¢
(find-net (cadr item) ’bottom) v
(delete~net-lists X
(delete-net-lists (cadr item) ’top ()) gﬂ
bottom ())))))) W
; WHEN ONLY THREE SIDES ARE USED TQ PLACE PADS, THIS W,
; FUNCTION LOOKS FOR TWO INSTANCES OF TOP OR BOTTOM '
; OCCURRING.]
(def merge-top-or-bottom-lists W
(lambda (item) iyt
(cond -
((null (cddr (find-net (cadr item) ’top))) i
(merge-side-lists item ’top)) N
(t (merge-side-lists item ’bottom))))) 0
Ny
; GIVEN A LIST AND A PARAMETER, IT RETURNS ‘T’ IF THE

; PARAMETER EXISTS IN THE LIST, NIL OTHERWISE. USED 3
; BY MERGE-TOP-OR-BOTTOM-LISTS TO DETERMINE IF THE]

; COMMON SIDE PARAMETER IS TOP OR BOTTOM >
(def find-net Sy
(lambda (item side) ‘i’
(find-net1 o
(such-that item Qﬁ
(flambda (element) {43
(equal side (car (reverse element)))))))) 'ax

Y

(def find-neti)
(lambda (item) b
(1ist (append (cdr (reverse (car item)))

143

7]
- -

)

) R
N . - - W - o (n »n “ym T LUS IR R, Ra®p® ' &,
",'s‘.‘l','.‘:'A't'l’.'s'-'t'!'n’!‘o'f'n"‘u03'0- s AR RN AN KNPt Xy L B OO K Tl L et AT A AT N AL AU WS

PIERITILT AN X R XA R AN RS

i o o e

e

"

-

-
et

§oegg ad ¥aB Vap bl

(cadr item)))))

; DELETES THE SECOND LIST APPEARING WITH THE ‘SIDE’
; ATTRIBUTE.
(def delete-net-lists
(lambda (item side out)
(cond
((null item) out)
(t
(cond
((equal side (car (reverse (car item))))
(delete-net-lists (cdr item) side out))
(t
(delete-net-lists (cdr item)
side
(append out
(1ist (car item))))))))))

USED WHEN ALL PINS CAN FIT ON TOP AND BOTTOM SIDES
ONLY. CLOCK PADS ARE DISTRIBUTED AMONG THE LEFT AND
RIGHT LISTS IN AN EFFORT TO EQUALIZE THE NUMBER OF
PADS IN THOSE LISTS. THE PARAMETER TIMES, THE
DIFFERENCE IN THE NUMBER OF ELEMENTS BETWEEN THE
ORIGINAL LEFT AND RIGHT LISTS, DETERMINES THE ACTUAL

AND GROUND IS ALWAYS APPENDED TO THE RIGHT LIST. THE
LEFT LIST IS PLACED ALONG THE BOTTOM. IF THE PADS DON'T
FIT, THE EXCESS IS PLACED ON THE LEFT CORNER OF THE TOP
SIDE. PADS THAT CONNECT TO THE RIGHT SIDE ARE PLACED
ALONG THE TOP. AGAIN, IF THEY DON’T FIT, THE EXCESS IS
PLACED ALONG THE RIGHT CORNER OF THE BOTTOM SIDE.
(def make~ top-and-bottom-pin-lists
(lambda (left right phi-list times)
(cond
((= times 0)
(cond
((null phi-list)
(append (list (number-pins (append left ’((power)))
‘bottom ’left 1))
(1ist (number-pins (append right ’((ground)))
"top ’right
(fix (/ extended-right
(pad-class-width)))))))

s Me Me ws We we W We ws Wr WMo we

(t
(cond
((= (length phi-list) 2)
(append (list (number-pins (append left (cadr phi-list)
’ ((power)))
'bottom ’left 1))
(list (number-pins (append right ’((ground))
(car phi-list))
'top ’right
(fix

144

) : .
' 1 » - Q
1“‘3‘@".“‘1"‘,'0‘.\'_ OO -‘!‘ OIS AN LR {.‘ies".o“.l. K X I“.G

DISTRIBUTION. POWER IS ALWAYS APPENDED TO THE LEFT LIST,

e

R N R TR TN U R X R A TON R R I TUTOR T U W R TRV U U WU YU U L o Saeg ata s R aBp ¥y o b

(/ extended-right W

(pad-class-width))))))) g

(t ‘
(append (list (number-pins (append phi-list left ﬁ
> ((power))) i

’bottom ’left 1))
(list (number-pins

(append (list (number-pins (append left ’((power)))
"bottom ’'left 1))

(append right ’((ground))) ﬁ
>top ’right ™
(fix (/ extended-right)
(pad-class-width))))))))))) -
((> times 0)
(cond 3
((null phi-list) 2
(cond ¢
((and o
(< (* (length left) (pad-class-width)) extended-right) W
(< (* (length right) (pad-class-width)) extended-right)))
(append (1ist (number-pins (append left ’{{power))) Q
‘bottom ’'left 1)) 3
(l1ist (number-pins Q
(append right ’((ground))) R
"top ’right (5
(fix (/ extended-right)
, (pad-class-width))))))) %
t]
(make-top-and-bottom-pin-lists (reverse E
(cdr (reverse left))))
(append (X
right »
(list X
Egar (reverse left)))) Q
™
(if (= times 1) N
0
(- times 2)))))) .
(t _ o
(append (list (number-pins (append left ’((power))) !
‘bottom ’'left 1)) X
(1ist (number-pins 0
(append phi-list ’((ground)) right) L
"top ’right _
(fix (/ extended-right ty
, (pad-class-width))))))))) 4!
t ¢
(cond K
((null phi-list) !
(cond)
. ((and (< (* (length left) (pad-class-width)) P
extended-right) I
(¢ (* (length right) (pad-class-width)) &
extended-right)) -
J
'

145 o

o PP . . e, , A > o . -~ N AW e NN m \ N v . -\('\d ‘.\(N(\ r\f_.-. -‘.y- o>)
PR AN by ity 1Yt W, S0t .'A‘.\u..hll..'\ A ANOTR R o N .q'l WA S AP L o . a B s :

..... * »

-
(%]
(list (number-pins (append right ’((ground))) a
"top ’right oty
(fix X
(/ extended-right A
(pad-class-width))))))) oW
(t
(make-top-and-bottom-pin-lists (append (list (car right)) - .“
left) N
(cdr right) :::‘
O "
(if (= times -1) o
0
(+ 2 o
times)))))) ;‘
(t o
(make-top-and-bottom-pin-lists (append left (car phi-list)) Iy
right 2
(cdr phi-list) »
(+ 1 times)))))))) w
; WHEN PAD PLACEMENT IS TO OCCUR ON THREE OR FQUR SIDES, ﬁ
. TF THE PAD LTST FITS ON THE LEFT SIDE, ORDER-SIDE IS N
; CALLED TO PLACE ALL PADS ON THE LEFT SIDE. OTHERWISE, X
; PADS ARE PLACED ALONG THE BOTTOM UNTIL A COUNTER REACHES)
; A VALUE EQUAL TO HALF THE EXCESS OF PADS. NEXT)\
; ORDER-SIDE IS CALLED TO PLACE PADS UNTIL THE LEFT SIDE IS !
; FILLED. ANY REMAINING PADS ARE PLACED ALONG THE TOP. "
(def order-left &
(lambda (list flag) B
(let ((topsize (fix (/ extended-top (pad-class-width))))) j
(cond o
((eq flag ’set) - iy
(order-bottom list ‘F
(fix (/ (- (length list) topsize) 2)) s
0 () ’left)) H
(t
(order-side list 1 () () ’left)))))) NG
; SEE COMMENTS FOR ORDER-LEFT q
(def order-right '
(lambda (list flag) \f
(let ((topsize (fix (/ extended-top (pad-class-width))))))
(cond 3
((eq flag ’set) g
(order-bottom list)
(fix (/ (- (length list) topsize) 2)) ¥
0 () ’right))
(t)
(order-side list 1 () () ’right)))))) . o
W
; PLACES PADS ON EITHER THE RIGHT OR LEFT SIDES UNTIL -
; THE COUNTER INSTANCE ADVANCES TO TOP-SIZE. TOP-SIZE “
; EQUALS THE NUMBER OF PADS THAT FIT ON THE LEFT/RIGHT '
o
b
146 .
“
'
_
A

. .. - ; (N » MO PN WY (P (N ™ Y (P ™, Yy AR, "
I R R R Ot TR A DR LSO Ay X e W Rl el IO DR LM A N AL AT N U R AP M e et !“:‘-".- IR LA AR AL SO

)
4
k]
; SIDE. 2
(def order-side ",
(1ambda (side-list instance out outl flag) oy
(cond ﬁi
((= instance topsize) -
(cond .\
((null side-list) y
(cond R
((eq flag ’left) Fg{
(order-top () ot
(append (list (append (list outl) ’(left))) w
out b
0 "
(t (append (list (cons ’(right) out)))))) e
(t Y
(cond N
((eq flag ’left) ¢
(order-top (cdr side-list) |
(append (list W
(append (1list (append outil ;%
(list b
(car side-list)))) Qv
' (left))) o

out)
(O»]
t]
(order-top (cdr side-list) sﬁ
(append (list ’Q%
(cons (append outl i
(list (car side-list))) .
"(right))) ?ﬁ
out) ())))))) ot
(t M
(reverse (order-side (cdr side-list) w
(1+ instance) o4
out . . . W
(append outl (list (car side-list))) !
£1ag)))))))
; PLACES PADS ALONG THE BOTTOM SIDE UNTIL THE COUNTER Xy
; INSTANCE = TIMES. »
(def order-bottom .
(lambda (side-list times instance out flag) Ky
(cond o
((= instance times) !
(order-side side-list o]
1 e
E%ist (append (list out) ’(bottom))) e
W
fla }
4 g)) ‘
(order-bottom (cdr side-list) .Qﬁ
times]
(1+ instance) L 1
||‘
.
147 N
A N
!

Fa 2" . L €
AT TY

: Ol Y R TUN R N AL S A T I W e e WA P T o
N TCH AT RR RS R T D it R I R LI W £ BPEANEON NS YA AN Ve MV

P R BT VLI LA FASETRIL T T\ P T 7oK Py TN L] (R TU W T WU WU WU LIS T AT N MW WU LN TPV w W) MU WU

(append out (list (car side-list)))
flag)))))

; PLACES PADS ALONG THE TOP UNTIL THE PAD LIST IS
; EXHAUSTED.
(def order-top
(lambda (side-list out outl)
(cond
((null side-1list)
(cond
((eq ’left (car (reverse (car out))))
(append (list (append (list outl)

*(top)))
out))
(t
(append (list (cons outl ’(top))) out))))
(t
(cond
((eq 'left (car (reverse (car out))))
(order-top (cdr side-list)
out
(append outl (list (car side-list)))))
' (t
(order-top (cdr side-list)
out

(append (list (car side-list)) outi))))))))

; PINS IS A LIST CONTAINING FULL PAD NAMES. SORTED-PINS
; IS A LIST CONTAINING POINTS. ORDER-PINS RETURNS
; A LIST OF PAD NAMES IN THE ORDER OF SORTED-LIST.
; THIS IS NECESSARY BECAUSE THE FUNCTION PAD~LAYOUT
; REQUIRES PAD NAMES TO FULLY IDENTIFY A PAD.
(def order-pins
(lambda (pins sorted-pins)
(cond
((null sorted-pins) (null-item))
(t
(append
(list (excise (null-item)
(order-pinsi pins
(cdr (reverse (car sorted-pins)))
(car (reverse

(car sorted-pins))))))
(order-pins pins (cdr sorted-pins)))))))

(def order-pinsil
(lambda (pins work-list side)
(cond
((null work-list) (list side))
(t
(append (list (order-pins2 pins (car work-list) side))
(order-pinsi pins (cdr work-list) side))))))

148

" AP A AINW Y W
DDA RS M AT AT AR N AN FEARSAL AR 35

)oK

(def order-pins2
(lambda (pins work-list side)
(cond
((or (is-pad-output4? (cadar pins))
(is-pad-output8? (cadar pins)))
(cond
((and (eq (cadaddadr (car pins)) (cadar work-list))
(eq (caddaddadr (car pins)) (caddar work-list)))
(append (cdr work-list) (cdar pins)))
t

(order~pins2 (cdr pins) work-list side))))
((or (is-pad-tri-state4? (cadar pins))
(is-pad-tri-state8? (cadar pins)))
(cond
((and (eq (cadaddadr (car pins)) (cadar work-list))
(eq (caddaddadr (car pins)) (caddar work-list)))
(append (cdr work-list) (cdar pins)))
(t
(order-pins2 (cdr pins) work-list side))))
((or (is-pad-power? (cadar pins))
(is-pad-ground? (cadar pinms))
(is-pad-phia? (cadar pins))
(is-pad-phib? (cadar pins))
(is-pad-phic? (cadar pins)))
(cond
((eq (caadr (car pins)) (caar work-list))
(append (cdr work-list) (cdar pins)))
(t
(order-pins2 (cdr pins) work-list side))))
((is-pad-input? (cadar pins))
(cond
((if (= (length (car (reverse (cadr (car pins))))) 2)
(eq (cadar (reverse (cadr (car pims))))
(cadar work-list))
(and (eq (cadar (reverse (cadr (car pins))))
(cadar work-list))
(eq (caddar (reverse (cadr (car pins))))
(caddar work-list))))
(append (cdr work-list) (cdar pins)))
(t
(order-pins2 (cdr pins) work-list side))))
(t (null-item)))))

; PRE-NUMBER-PINS AND PRE-NUMBER~PINS1 ARE USED WHEN
; PADS ARE PLACED ON THREE OR FOUR SIDES. THESE
; FUNCTION ENSURE THAT THE INTERNAL TRMINATION SITE,
; LEFT OR RIGHT, ARE CONSIDERED IN NUMBER ASSIGNMENT.
; FOR EXAMPLE, PADS ALONG THE TOP THAT CONNECT TO THE
; RIGHT SIDE OF THE CIRCUIT SHOULD BE POSITIONED ON
; THE RIGHT CORNER, WHILE THOSE THAT CONNECT TO THE LEFT
; SIDE ARE PLACED ON THE LEFT CORNER.
(def pre-number-pins

149

) o
A A AR N Fm x = A A s . A AT R A A A A AN A e A A N L S R AN A LIS AT NN
Jt‘ A S ‘o&'&" " X) M= X n X ot S, -!"-!)

5 . - . v, -3 e aata Y \ % . P - $omab ‘ay naY el ey i .,
T TS T TR T AL PRY T i TR LN LR AN "OC RN TOE AR AN AU K AN (WA RA N A Y NRLW U] 14 Ry %Y

(lambda (list out flag) ¢,

(cond 9
((null list) out) o
(t 0'«

(append out (pre-number-pinsl (cdr list) (caar list) iy
(cadar list) flag))))))

. (N

(def pre-number-pinsi -3

(lambda (list side-list sidel flag) "

(cond . &

((and (or (eq sidel ’top) (eq sidel ’bottom)) Y

(eq flag ’right))

(pre-number-pins list Ny
(l1ist (number-pins e

(if (eq flag ’top) A

side-list -%

(reverse side-list))

sidel)

flag N

(fix (/ extended-right :F

(pad-class-width))))) K

flag)) N

(t 0

(pre-number-pins list)
(1ist (number-pins side~list sidel 7
flag 1)) .
flag))))) ’
g
; ASSIGNS A NUMBER TO EACH PIN THAT, ALONG WITH THE SIDE, o

; LOCATES EACH PAD. NUMBERS FOR PINS ON THE TOP OR
; BOTTOM SIDES THAT CONNECT TO THE LEFT SIDE ARE ASSIGNED oy
; BY A COUNTER STARTING AT 0. THE COUNTER FOR PADS THAT - ¥
; CONNECT TO THE RIGHT SIDE STARTS WITH THE MAXIMUM NUMBER ‘;
; (THE PAD AT THE RIGHT CORNER) AND COUNTS DOWN UNTIL THE 3
; LIST IS EXHAUSTED. X

(def number-pins

(lambda (list sidel side2 pin-number) 9

(cond !
((null list) (list sidel)) o
((and (or (eq sidel ’top) (eq sidel ’bottom)) ;

(eq side2 ’right)) 0
(append (1list (cons (car list) (list pin-number))) \
(number-pins (cdr list) sidel side2 5

((1- pin-number)))) s;
t
(append (1list (cons (car list) (list pin-number))) 2:

(number-pins (cdr list) sidel side2 3
(1+ pin-number))))))))

N

; PINS-DIMENSIONS DETERMINES THE DIMENSIONS OF THE CIRCUIT.)

; IT’S OQUTPUT IS A FOUR NUMBER VECTOR CONTAINING THE LY,

; POSITIONS OF THE TOP, RIGHT BOTTOM AND LEFT SIDES OF THE - 4ﬁ

; CIRCUIT. VARIOUS PARAMETERS ARE CONSIDERED IN o
; CALCULATING THESE NUMBERS. AMONG THEM: '

e

150 3

o

:::

'

’

v

. . e s D m o P g P O AT W W e 7 P P I N AR P AT AT o Tt
AT, M N L T DN R AA N AT SN D0 G N WS i S ¢ -,

MAXIMUM PAD-HEIGHT FOUND IN THAT SIDE
SIZE OF THE INTERNAL CIRUIT LAYOUT
POWER AND GROUND RING REQUIREMENTS
; . RING-WIDTH
(def pins-dimensions

(lambda (pin-net pins power ring-width extended-right
extended-top)

2
b
»

W

(cond

; WHEN PADS PLACED ON TOP AND BOTTOM SIDES ONLY
((>= (x 2 extended-right) (* (length pins) (pad-class-width)))
(make-dimensions
0
(+ extended-top (ring-width-top ring-width) power power 3

; RETURNS THE HEIGHT OF THE TALLEST PAD ON
; THE TQP PAD LIST
(slash-alpha (cdr (reverse (cadr pin-net)))
(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height pin
power))))
(+ extended-right (ring-width-right ring-width) power 3)
(- 0 (ring-width-bottom ring-width) pins-power power power 3
; RETURNS THE HEIGHT OF THE TALLEST PAD ON
; THE BOTTOM PAD LIST
(slash-alpha (cdr (reverse (car pin-net)))
(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height pin power))))
(- 0 (ring-width-left ring-width) power power 6)))
((>= (+ extended-top extended-top extended-right)
(* (length pins) (pad-class-width)))
(make-dimensions
0
(+ extended-top (ring-width-top ring-width) power power 3
(slash-alpha (cdr (reverse (car pin-net)))
(pad-class-basic-height)
(function max)
(flambda (pin) (pin-height pin power))))
(+ extended-right (ring-width-right ring-width)
power power 3 (slash-alpha
(cdr (reverse (caddr pin-net)))
(pad-class~basic-height)
(function max)
(flambda (pin) (pin-height pin power))))
(- 0 (ring-width-bottom ring~width) power power 3)
(- 0 (ring-width-left ring-width) power power 3
. (slash-alpha (cdr (reverse (cadr pin-net)))
(pad-class~basic-height)
(function max)
. (flambda (pin) (pin-height pin power))))))
(t

(make-dimensions

151

R Y e T T R AR TN R R N e SN RTOTL TR NI L T ST SRR TN R

‘ (+ extended-top (ring-width-top ring-width) power power 3
i (slash-alpha (cdr (reverse (car pin-net)))
3 (pad-class-basic-height)
v, (function max)
‘ (flambda (pin) (pin-height pin power))))
(+ extended-right (ring-width-right ring-width)
ey power power 3 (slash-alpha
i (cdr (reverse (cadddr pin-net)))
y (pad-class-basic~height)
(function max)
(flambda (pin) (pin-height pin power))))

e (- 0 (ring-width-bottom ring-width) power power 3

zﬂ (slash-alpha (cdr (reverse (cadr pin-net)))

?f (pad-class-basic-height)

B0 (function max)

o (flambda (pin) (pin-height pin power))))

(- 0 (ring-width-left ring-width) power power 3
(slash-alpha (cdr (reverse (caddr pin-net)))

;ﬁi (pad-class-basic-height)

‘% (function max)

e (flambda (pin) (pin-height

B pin power)))))))))

; GIVEN THE COMPLETE PAD NETS, PLACE-PINS BREAKS OFF THE
; LIST OF PADS FOR ONE SIDE AND GIVES IT TO PLACE-PINS1
i) ; FOR FURTHER PROCESSING. DIMENSIONS VALUES ARE OBTAINED
; FROM PINS-DIMENSIONS. POWER IS THE WIDTH OF THE SKELETO
; POWZR/GROUND RAILS.
(def place-pins

e (lambda (pin-list dimensions power)

NG (cond

ﬁf ((= (length pin-list) 7) (aull-item))

By (t

‘QZ (merge (place-pinsi (cdr (reverse (car pin-list)))

' (car (reverse (car pin-list)))

e dimensions power)

e (place-pins (cdr pin-list) dimensions power))))))
.;t:.

$§ ; GIVEN A LIST OF PADS ON A GIVEN SIDE, PLACE-PINS1 PEELS
i{ ; OFF INDIVIDUAL PADS AND GICES THEM TQ PLACE-PIN FOR

; FURTHER PROCESSING.
(def place-pinsi

W (lambda (pin-listl side dimensions power)

b: (let ((top (dimensions-top dimensions))

'ﬁi (right (dimensions-right dimensions))

ys (bottom (dimensions-bottom dimensions))

‘& (left (dimensions~left dimensions)))

W (cond

¥? E(null pin-list1) (null-item))

XN t

5{ (merge (place-pin (cadar pin-list1)

gﬁ (caar pin-listl) side power)

(place-pinst (cdr pin-listl) side

"o 152

6l - W T IO A S (B R N 0 TR AT AR AT A T AT Ta
B NAC NI ARLA0 Nt A AW WA W O N N N RN Y £,

N

o«

N "_‘h

......

R
M WO ,.l‘:ll‘

1y ady AETata et 0a7 et AaT 2% a0 et Bat Bat B8 et Rt g 0 Qav At i g 8Va iR 4 Rt e e

dimensions power)))))))

; PLACES AND ORIENTS THE PIN LAYOUTS. THE ACTUAL
; LAYOUT IS PRODUCED BY LAYQUT-PAD. ORIGINAL PAD
; ORIENTATION IS SUITED FOR LAYING PADS ON THE BOTTOM.
; TO OBTAIN CORRECT ORIENTATIONS FOR THE OTHER SIDES,
; THE L5 FUNCTION MIRRORX (PRODUCES AN IDENTICAL IMAGE
; AS IF THE X~AXIS WERE A MIRROR) IS USED FOR THE TOP,
; THE L5 FUNCTION ROTCCW (ROTATE COUNTER CLOCKWISE) IS
; USED FOR THE RIGHT SIDE,
; THE LS FUNCTION ROTCW (ROTATE CLOCKWISE) IS USED FOR
; THE LEFT SIDE.
; THE PRODUCT OF THE PIN-NUMBER AND THE WIDTH OF THE
; PAD-CLASS PROVIDES THE X~COORDINATE POSITICN WHEN
; PLACING PADS ON THE TOP OR BOTTOM SIDES, AND THE
Y-COORDINATE FOR THE RIGHT AND LEFT SIDES.
(def place pin
(lambda (pin pin-number side power)
(cond
((eq side ’top)
(move (mirrorx (layout-pad pin power ’top))
(* (pad-class-width) (1- pin-number))
top))
((eq side ’right)
(move (rotccw (layout-pad pin power ’right))
right
(* (pad-class-width) (1- pin-number))))
((eq side ’bottom)
(move {layout-pad pin power ’bottom)

(* (pad-class-width) (1- pin-number))
bottom))

(t

(move (rotccw (mirrorx (layout-pad pin power ’left)))
left
(* (pad-class-width) (1- pin-number)))))))

; LAYOUT-GROUND-RING BUILDS A METAL1 RING ON THE INTERIOR
; PAD BOUNDARY AND CONNECTS IT TO THE SKELETON GROUND RAIL
; SITUATED ON THE TOP OF THE INTERNAL CIRCUIT LAYQGUT. THE
; THE LAYOUT DEPENDS ON THE NUMBER OF SIDES USED TO PLACE
; PADS, THE SIZE OF THE INTERNAL LAYOUT, THE DIMENSIONS

; OBTAINED FROM PINS-DIMENSIONS, AND THE LOCATION OF THE

E e e e

; POWER PAD. THIS ROUTINE WILL ONLY LAY METAL WHERE
; REQUIRED. FOR LAYOUTS WITH PADS ON 2 OR 3 SIDES, THE
; RING CONSISTS OF WIRES ON THE LEFT, RIGHT AND TOP SIDES
WITH A CONNECTION TO GROUND-PAD. FOR LAYOUTS WITH PADS
ON 4 SIDES, THE RING CONSISTS OF WIRES ON ALL FOUR SIDES.
(def layout ground-ring
(lambda (pins-power power dimensions extended-right extended-top
power-point ground-point sides)
(let ((offset (+ pins-power (pad-class-basic-height))))
(let ((top (- (dimensions-top dimensions) offset))
(right (- (dimensions-right dimensions) offset))
(bottom (+ (dimensions-bottom dimensions) offset))

D AN Oy

e e e

153

: \ M v [Y] W O W CALE T a 0 ", -r..l‘ A g 0)
KR O T I eI N AR v L S Lt S LOCH S RSN sttt o e

a’ (rect

A (rect

(rect

o (rect

e (rect

y o . g
e Y a Joh W v{'V‘

RO R D AP P

(left (+ (dimensions-left dimensions) offset)))

’NM

'NM

' NM

'NM

’NM

. (cond
X ((= sides 2)
> (merge
:; (rect ’NM (- (point-x ground-point) (/up power 2))
! intended~top
g (+ (point-x ground-point) (/up power 2))
By (point-y ground-point))
i (rect 'NM (+ (- left offset) pins-power 3)
2y (- top pins-power)
4 :
o extended-right
' top)
i (rect ’NM (+ (- left offset) pins-power 3)
l‘: bottom
;b (- (point-x power-point) (/up (pad-class-width)
X 2))
&= (+ bottom pins-power))
(rect 'NM (+ (- left offset) pins-power 3)
a4 bottom
e (+ (- left offset) pins-power pins-power 3)
ﬁ top)))
s ((= sides 4)
iy (merge

(rect ’NM (- (point-x ground-point) (/up power 2))

intended-top

(+ (point-x ground-point) (/up power 2))

(point-y ground-point))

left

bottom

(+ left pins-power)

top)

left

(- top pins-power)

right

top)

(- right pins-power)

bottom

right

top)

left

bottom

(- (point-x power-point) (/up (pad-class-width)
2))

(+ bottom pins-power))

(+ (point-x power-point) (/up (pad-class-width)
2))

bottom

right

(+ bottom pins-power))))

(- (point-x ground-point) (/up power
intended~top
(+ (point-x grourd-point) (/up power

154

R YLIR
W, s‘nl

LS L STRRY
o e)

P

(point-y ground-point))
(rect ’'NM left
bottom
(+ left pins-power)
top)
(rect ’NM left
(- top pins-power)
right
top)
(rect ’'NM (- right pins-power)
(+ bottom (pad-class-width))
right
top))))))))

; RETURNS A LIST OF FOUR NUMBERS THAT INDICATE THE WIDTH
; REQUIRED BY THE TOP, RIGHT, BOTTOM AND LEFT PAD ROUTING
; CHANNELS.
(def get-ring-width
(lambda (item right top)
(make-ring-width
(* 7 (if (null (extract-nets item ’top right top))
0
(net~track-number
(minmax (extract-nets item ’top right top)
(flambda (netl net2)
(> (net-track-number netl)
(net-track-number net2)))))))
(* 7 (if (null (extract-nets item ’‘right right top))
0
(net-track-number
(minmax (extract-nets item ’right right top)
(flambda (netl net?2)
(> (net-track-number netl)
(net-track-number net2)))))))
(* 7 (if (null (extract-nets item ’bottom right top))
0
(net-track-number
(minmax (extract-nets item ’bottom right top)
(flambda (netl net2)
(> (net-track-number netl)
(net-track-number net2)))))))
(* 7 (if (null (extract-nets item ’left right top))
0
(net-track-number
(minmax (extract-nets item ’left right top)
(flambda (neti net2)
(> (net-track-number netl)

(net-track-number net2))))))))}

; NET EXTRACTION

; GIVEN A LIST OF POINTS RETURNS A LIST OF THE POINT

155

\

| | 3

; EE N T, ST o M R T TR o o, T A R S M TR A A
o T R T S G S T T e T ety < AN RGN A a o o. TR0 TN TN V.

g

..
@ o

.
e

LS
\

> L
v
3.

7
5% %

40

P8 RIKILAAO T

Con

; Y-COORDINATES, ORDERED FROM LEAST TO GREATEST.

(def sort-y ?

(lambda (list sorted-list) ;

(cond 2

((null list) sorted-list) N

(t (sort-yl (car list) (cdr list) list so ted-list))))) ‘ e
'

(def sort-yt by

(lambda (thing 1 list sorted-list))
(cond i

((null 1) (sort-y (excise thing list)

(append sorted-list (list (point-y (car thing)))))) r

; ((> (point-y (car thing)) (point-y (caar 1))) -
, (sort-y1 (car 1) (cdr 1) list sorted-list)) -
. (t (sort-yl thing (cdr 1) list sorted-list))))) g

w v .

; PREP-PAD-BANK IDENTIFIES THE LOCATION OF THE GROUND
; AND POWER PADS AND CALLS ON LEFT-PAD-BANK AND
; RIGHT-PAD-BANK TO BUILD THE PAD NET LIST.
; (def prep-pad-bank
(lambda (list side)
(let ((ground-point (point-x (find pins-layout ’(ground))))
(power-point (point-x (find pins-layout ’(power)))))
(cond
((eq side ’left)
(left-pad-bank (get-nets list ’(bottom))
(get-nets list ’(left))
(get-nets list ’(top))))

- -

.
-

G

e e

(t

(right-pad-bank (get-nets list ’(bottom))
(get-nets list ’(right))
(get-nets list ’(top))))))))

P e P

,- -H-p_ r

IDENTIFIES THOSE PADS LOCATED TO THE LEFT OF THE
POWER PAD, IF ON THE BOTTOM, AND TO THE LEFT OF

; X
; THE GROUND PAD, IF ON THE TOP AND RETURNS A LIST

; THAT PINPOINTS THEIR LOCATION AS FOLLOWS: \

; 1. IF PAD IS ON THE LEFT SIDE, "

X ; USE THE PAD’S Y-COORDINATE ™

; 2. IF PAD IS ON THE BOTTOM SIDE, '
; USE THE PAD X-COORDINATE * -1 L‘
; 3. IF PAD IS ON TCP, 3
; USE THE PAD X-COORDINATE + EXTENDED-TOP. ::
(def left-pad-~bank ~)
(lambda (bottom left top) 2
(append -
(reverse kg
(map-argument ’times -1 s
' (extract-points bottom power-point ’< ())())’ +4
(mapcar ’caddar left) ; ;CADDR = POINT-Y >
(map-argument ’plus extended-top)
(extract-points top ground-point ’< ())())))) L
‘l

,
:’ .

156 M

n

-h

W

]
o
vl
w5

g,

. C SRR R TS T LT RE LT RNy R PN T a5 ; Ca o o Cn AT 0 T Tl
W .. ." """‘*'"I- r{w.(._ le? ol T8 BSOS N ~ d" LT s e ok LI A

; IDENTIFIES THOSE PADS LOCATED TO THE RIGHT OF THE
; POWER PAD, IF ON THE BOTTOM, AND TO THE RIGHT OF
; THE GROUND PAD, IF ON THE TOP AND RETURNS A LIST
; THAT PINPOINTS THEIR LOCATION AS FOLLOWS:
; 1. IF PAD IS ON THE RIGHT SIDE,
; USE THE PAD’S Y-COORDINATE
; 2. IF PAD IS ON THE BOTTOM SIDE,
; USE THE PAD X-COORDINATE * -1
; 3. 1IF PAD IS ON TGP,
; USE THE PAD X-COORDINATE + EXTENDED-TQP.
(def right-pad-bank
(lambda (bottom right top)
(append
(map-argument ’times -1
(extract-points bottom power-point ’> ()) ())
(mapcar ’caddar right)
(map-argument ’plus extended-top
(extract-points top ground-point ’> () (0))))

; EXTRACTS FROM A LIST OF POINTS THOSE POINTS THAT MEET
; THE CONDITION SET BY PREDICATE WITH RESPECT TO THE
; PARAMETER POINT.

(def extract-points

(lambda (list point predicate output)

(cond Y
((null list) output) R
200
. <t(cond i&ﬁ
((predicate (cadaar list) point) i
(extract-points (cdr list) point predicate 2
(append output (list (cadaar list))))) NG

(t (extract-points (cdr list) point predicate output))))))) o

e

; APPLIES THE FUNCTION SPECIFIED BY PREDICATE AND THE ﬁ:‘
; ARGUMENT SPECIFIED BY THE PARAMETER ARGUMENT TO EVERY KN

; ELEMENT OF A LIST. f£OR EXAMPLE,

; (MAP-ARGUMENT ’+ 4 LIST), ADDS 4 TO EVERY ELEMENT IN Rty

; LIST. 7

(def map-argument >
(lambda (predicate argument list output) ﬂ;
(cond td

((null 1list) output) e
(t (map-argument predicate argument (cdr list) ?&;
(append output ol
(list (predicate (car list) }ﬁ-

argument)))))))) “e

. L J
; NET LAYOUT 5
¥
; TOP-LEVEL OF PAD ROUTING ROUTINES. THE PROBLEM IS e#
; DIVIDED IN TWG; THE LEFT AND RIGHT ROUTING PROBLEM. "{

; MOAT BREAKS THE NET-LISTS IN TWO. INNER-BANK CONTAINS L)
; THE INTERNAL NET TERMINALS AND OUTER-BANK THE PAD .r'
.
- ‘l
157 sra

L8

y
OGO

TN ey,
L) . -

..........

TERMINALS. THE NET-LISTS ARE PASSED TO ROUTE-LEFT-BOTTOM
OR ROUTE-RIGHT-BOTTOM. THESE ROUTE ALL NETS WITH PADS ON
THE BOTTOM. WHEN FINISHED, IT PASSES WHAT REMAINS OF THE
NET-LIST TO ROUTE-LEFT-SIDE OR ROUTE-RIGHT-SIDE. THESE
ROUTE NETS WITH PADS ON THE LEFT OR RIGHT SIDES. WHAT’S
LEFT OF THE NET-LISTS IS THEN ROUTED BY ROUTE-LEFT-TOP

OR ROUTE-RIGHT-TOP.

e e Wi o wae we N W

(def moat
(lambda (left-ring-nets right-ring-nets layer width ring-width)
(declare (special layer width ring-width))

(let ((space 3))

: (merge
& (let ((inner-bank (car left-ring-nets))
f" (outer-bank (cadr left-ring-nets)))
A (route-left-bottom (car left-ring-nets)
! (cadr left-ring-nets) 1))

(let ((inner-bank (car right-ring-nets))

p (outer-bank (cadr right-ring-nets)))

W (route-right-bottom (car right-ring-nets)

g (cadr right-ring-nets) \
o INN

i ; MACROS USED TO EXTRACT THE DESIRED NUMBER FROM
3 ; RING-WIDTH.

(defmacro top-width (item)
(list ’car item))

(defmacro right-width (item)
(list ’cadr item))

(defmacro bottom-width (item)
(list ’caddr item))

C
r

5

L

-

(defmacro left-width (item)
(list ’cadddr item))

L ; ROUTES NETS BETWEEN PADS ON THE BOTTOM AND CORRESPONDING
" ; TERMINAL ON THE LEFT SIDE UNTIL IT ENCOUNTERS POSITIVE
* ; VALUE IN OUTER-BANK. IT THEN PASSES THE NET-LIST TO

~ ; ROUTE-~LEFT-SIDE.

H (def route-left-bottom

o (lambda (t-in t-out track-number)

?’ (cond

" ((null t-out) (null-item))

((> (car t-out) 0) (route-left-side t-in t-out
'up track-number))

3 N

W (merge

f (rect layer '
A (abs (+ (car t-out) (/ width 2))))
i: (- 0 power (bottom-width ring-width)) ‘

(abs (- (car t-out) (/ width 2)))

158

AR Mg YO ; . W W W AL et N T PR -““"‘--i- -.-‘r-‘r-‘. TN '."J".“-f:\.'_'.""." L
...... dc-‘l.‘l‘l,l'- AL AL .l",l.,.-,. % .. uf iy b WM A 'a\‘\\"\ e e g

(+ (- 0 (* track-number 7)) width))
(rect layer
(- 0 (* track-number 7))
(= 0 (* track-number 7))
(abs (~ (car t-out) (/ width 2)))
(+ (= 0 (* track-number 7)) width))
(rect layer
(-~ 0 (* track-number (+ space width)))
(- 0 (* track-numcer (+ space width)))
(- width (* track-number (+ space width)))
(+ (car t-in) (/ width 2)))
(move (poly-cut) (- 0 (* track-number (+ space width)))
(+ (car t-in) (/ width 2)))
(rect ’NP (- (/ width 2) (* track-number (+ space width)))
(-~ (car t-in) 1)
(+ power space (/ width 2))
(+ (car t-in) 1))
(route-left-bottom (cdr t-in) (cdr t-out)
(+ 1 track-number)))))))

; ROUTES NETS BETWEEN PADS ON THE LEFT SIDE AND THE
; INTERNAL CIRCUIT UNTIL IT ENCOUNTERS AN ELEMENT IN
; OUTER-BANK WITH A VALUE GREATER THAN EXTENDED-TOP.
; IT THEN PASSES WHAT REMAINS OF THE LIST TO
ROUTE-LEFT-TQP.
(def route-left-side
(lambda (t-in t-out flag track)
- (let ((span (left-width ring-width)))
(cond
((null t-out) (null-item))
((> (car t-out) extended-top)
((route-left-top t-in t-out))
t
(cond
((= (car t-in) (car t-out))
(merge
(rect 'NM (- O power span)
(- (car t-out) (/ width 2))
(- 0 space)
(+ (car t-out) (/ width 2)))
(move (poly-cut) (- O space width)
(+ (car t-out) (/ width 2)))
(rect ’NP (- O space (/ width 2))
(- (car t-out) 1)
(+ power space (/ width 2))
(+ (car t-out) 1))
(route-left-side (cdr t-in) (cdr t-out) ’straight 1)))
((> (car t~in) (car t-out))
(merge
(route-left-moat~up (car t-in) (car t-out)
, (if (eq flag ’'up) track 1))
| (route-left-side (cdr t-in) (cdr t-out) ’up
(if (eq flag ’up) (addl track) 2))))
(t

159

WAL WA ','Pr'o"‘-r.‘ ""J""J‘ fli'-'fd' rr-l-~t '.v-.'v- L ENT) R S
' A ko -.'o [U Y (. ""'“"\' VA AT AL

O AL A

-
A

-
’_“ - -”

>
"{\f"f'}.\f‘}'

R - eas T R R O P O O Ty
T T TSP P T T T L TR S T T S S T T B L WU WU WU YU R U L ¥ ey r ot PR by 5™ a?)" V" oM ;

(merge
(route-left-moat-down (car t-in) (car t-out)
L (if (eq flag ’down) track 1))
. (route-left-side (cdr t-in) (cdr t-out) ’down
(if (eq flag ’down)
(add1 track)
2D
; ROUTES WHAT REMAINS OF NET-LIST BETWEEN PADS ON TOP
; AND TERMINALS ON THE LEFT-SIDE.
(def route-left-top
(lambda (t-in t-out)
(let ((span (top-width ring-width))

(stretch 0)) M
(cond ~
((null t-in) (null-item)) e,

(t :
(merge "%

(route-left-topl t-in t-out (length t-in))

(route-left-top (cdr t-in) (edr t-out)))))))) o,
AN
(def route-left-topl ﬁh
(lambda (t-in t-out track) Qh
(merge W

(rect ’NM (- (car t-out) extended-top (/ width 2))

(- (+ extended-top (* (+ space width) track)) g

width) o

(+ (- (car t-out) extended-top) (/ width 2)) ool

(+ extended-top span power power)) 4N

(rect ’NM (- 0 (* (+ space width) track)) 2
(- (+ extended-top (* (+ space width) track))

width) N

(+ (- (car t-out) extended-top) (/ width 2)) S

(+ extended-top (* (+ space width) track))) o

(rect 'NM (- 0 (* (+ space width) track)) 1)

(- (car t-in) (/ width 2))
(- width (* (+ space width) track))

(+ extended-top (* (+ space width) track))) R
(move (poly-cut) (- 0 (* track (+ space width))) -:
(+ (car t-in) (/ width 2))) oy
(rect ’NP (- width (/ width 2) (* track (+ space width))) N)
(- (car t-in) 1)
(+ power 3 (/ width 2)) »
(+ (car t-in) 1))))) o
¢
; WHEN THE TERMINAL IN INNER-BANK > TERMINAL FROM }‘::
; OUTER-BANK. p
(def route-left-moat-up o)
(lambda (inner outer track)
(merge - Wy
(rect ’NM (- O span power power) he!
(- outer (/ width 2)) :j\
(- width (* track (+ space width))) , .
(+ outer (/ width 2))) v
(rect 'NM (- 0 (* track (+ space width))) ®
"'
A
160 N
1:|.\
:«:“,
N
. N
ot . . : A A s Tt T - ‘-‘ < .r.__‘ ‘.“.-_‘__.\.r\., .‘_\ .-_’.,..\._\-\.... -\.- BN < g !"

(- outer (/ width 2)) Q

(- width (* track (+ space width))) [

(+ inner (/ width 2))) gc

(move (poly-cut) (- 0 (* track (+ space width))) I

(+ inner (/ width 2))) -

(rect 'NP (- 0 (* track (+ space width)) (/ width 2)) ?f

. (- inner 1)]
(+ power 3 (/ width 2)) X

(+ inner 1))))) ﬁ:

l."

; WHEN TERMINAL IN OUTER-BANK > TERMINAL FROM INNER-BANK. ‘.
(def route-left-moat-down e
(lambda (inner outer track) ﬁ
(merge .
(rect ’NM (- O span power power) ol

(~ outer (/ width 2)) !

(= (* track (+ space width)) space span) :

(+ outer (/ width 2))) A

(rect ’NM (~ (* track (+ space width)) span space width) tﬁ

(- inner (/ width 2)) o

(- (* track (+ space width)) span space) by

(+ outer (/ width 2))) 3

(move (poly-cut) (- (* track (+ space width)) a4

span space width) g
(+ inner (/ width 2))) 2
(rect ’NP (- (* track (+ space width)) w0
' span space (/ width 2)) 5'
(- inner 1) o
(+ power 3 (/ width 2)) 4
(+ imner 1)))))

bog

U

" ; ROUTES NETS BETWEEN PADS ON THE BOTTOM AND CORRESPONDING o

; TERMINAL ON THE RIGHT SIDE UNTIL IT ENCOUNTERS POSITIVE -;

; VALUE IN OUTER-BANK. IT THEN PASSES THE NET-LIST TO A3

; ROUTE-RIGHT-SIDE. L

(def route-right-bottom i

(lambda (t-in t-out track-number) o

(cond N4

((null t-out) (null-item)) Yot

((> (car t-out) 0) (route-right-side t-in t-out ’up #5
track-number))

(t ’

(merge Y

(rect layer (abs (+ (car t-out) (/ width 2))) ¢

(- 0 (bottom-width ring-width) power) O

(abs (- (car t-out) (/ width 2))) ;ﬁ‘
(+ (- 0 (* track-number 7)) width)) A
(rect layer (abs (+ (car t-out) (/ width 2))) .F
(- 0 (* track-number 7)) o

(+ extended-right (* track-number 7)) zﬁ
(+ (- 0 (* track-number 7)) width)) R

(rect layer (- (+ extended-right (* track-number

(+ space width))) !
width) ’

161 %4

U

AN A" AN VL i - - 3 AR 3 - . - w M S A
's.'A‘-‘.k,. OO IO M Rl AN 2 TR M AR = PR ~ ot T NN ALK K R S A !;- LW IO LA

. . Y Y P g X
R N R I U TR TR UL UN O U LY N TUN UW VW AT VLA .St an SORTORT OB MM WA T T oY

R LIRS N RN

(= 0 (* track-number (+ space width)))
(+ extended-right (* track-number
(+ space width)))
(+ (car t-in) (/ width 2)))
(move (poly-cut) (- (+ extended-right
(* track-number (+ space width)))
width)
(+ (car t-in) (/ width 2)))
(rect ’NP (- extended-right power 3 power 3)
(- (car t-in) 1)
(+ extended-right space (/ width 2))
(+ (car t-in) 1)) o
(route-right-bottom (cdr t-in) (cdr t-out) %,
'
¢

PSS St S o

T |

-
-

L2

(+ 1 track-number))))))) ot

\
; ROUTES NETS BETWEEN PADS ON THE RIGHT SIDE AND THE :
; INTERNAL CIRCUIT UNTIL IT ENCOUNTERS AN ELEMENT IN
; OUTER-BANK WITH A VALUE GREATER THAN EXTENDED-TOP.
; IT THEN PASSES WHAT REMAINS OF THE LIST TO
! ; ROUTE-RIGHT-TOP. N
b (def route-right-side i
(lambda (t-in t-out flag track)
(let ((span (right-width ring-width)))
(cond
((null t-out) (null-item))
((> (car t-out) extended-top) (route-right-top t-in t-out))
(t

- &
fo._p-_‘-‘r -

(cond
: ((= (car t-in) (car t-out))
(merge
(rect 'NM (+ extended-right space)
(- (car t-in) (/ width 2))
(+ extended-right span power)
(+ (car t-in) (/ width 2)))
(move (poly-cut) (+ extended-right space)
(+ (car t-in) (/ width 2)))
! (rect ’NP (- extended-right power 3 power 3 (/ width 2))
(- (car t-in) 1)
(+ extended-right space (/ width 2))
(+ (car t-in) 1))
(route-right-side (cdr t-in) (cdr t-out) ’straight 1)))
((> (car t-in) (car t-out)) "
(merge y
(route-right-moat-up (car t-in) (car t-out)
(if (eq flag ’up) track 1)) N
) (route-right-side (cdr t-in) (cdr t-out) ’up
; (if (eq flag ’up) (addl track) 2)))) (t

-
e -

AT

-

Y o

T Bl T e o . ae

(merge =
(route-right-moat-down (car t-in) (car t-out) "

(if (eq flag ’down) track 1))
(route-right-side (cdr t-in) (cdr t-out) ’down) W
| (if (eq flag ’down) e
(add1 track) \
20NN "

162

: -y Y]
. . R . oy : TGS IE T pTIe PRy
RN IR)t TSN O TRSL I L D SR ORI DR Tl R A g R R AT X e P STt A S TN

NN A A M R A R A R A R I N AN K A RN RO A TAN N

W]
P
.
; WHEN THE TERMINAL IN INNER-BANK > TERMINAL FROM tg
; OQUTER-BANK. A
(def route-right-moat-up ™
(lambda (inner outer track) o
(merge ;
(rect ’NM (+ extended-right ”
(* track (+ space width))) Kty
(- outer (/ width 2)) Y
(+ extended-right span power power) @ﬁ
(+ outer (/ width 2))) 4
(rect ’NM (+ extended-right on
(* track (+ space width))) bor
(- outer (/ width 2)) My
(+ extended-right width e
(* track (+ space widtk))) %ﬁ
(+ inner (/ width 2))) bt
(move (poly-cut) (+ extended-right A
(* track (+ space width))) 3
(+ inner (/ width 2))) e
(rect ’NP (- extended-right power 3 power 3 (/ width 2)) by
(- inner 1) !:::
(+ extended-right (/ width 2) e
(* track (+ space width))) e
(+ inner 1)))))
; WHEN THE TERMINAL IN INNER-BANK < TERMINAL FROM ...v
; OUTER-BANK. b,
(def route-right-moat-down kﬁ
(lambda (inner outer track) kﬂ
(merge [N
(rect ’NM (- (+ extended-right space span) o
(* track (+ space width))) o
(- outer (/ width 2)) .o"
(+ extended-right span space power power) B
(+ outer (/ width 2))) g
(rect 'NM (- (+ extended-right span space) g
(* track (+ space width))) K.
(- inner (/ width 2)) , o
(- (+ extended-right span width space) ot
(* track (+ space width))) G
(+ outer (/ width 2))) q$
(move (poly-cut) (- (+ extended-right span space) Pl

(* track (+ space width)))
(+ inner (/ width 2)))

(rect ’NP (- extended-right power 3 power 3 (/ width 2)) W
(- inner 1)

N

(- (+ extended-right span (/ width 2) space) by

(* track (+ space width))) i

(+ inner 1))))) ;

.)

; ROUTES WHAT REMAINS OF NET-LIST BETWEEN PADS ON TOP St

; AND TERMINALS ON THE LEFT-SIDE. ‘\

(def route-right-top o
{lazkdz (t-in t-out)

(let ((span (top-width ring-width)) ._

¥

(8, A

163 2

W

K

L2

v
hl.?‘v‘"l“‘-. ..:“..

] ~ -~ o
v <] Y !
SO IOAC O B SONOAOSONOTIN Ty DA I i L RO W D S R K W

(stretch 0))

(cond
((null t-in) (null-item))
(t
(merge
(route-right-topl t-in t-out (length t-in))
(route-right-top (cdr t-in) (cdr t-out)))))))) -

(def route-right-topl
(lambda (t-in t-out track)
(merge
(rect 'NM (- (car t-out) extended-top (/ width 2))
(- (+ extended-top (* (+ space width) track))
width)
(+ (- (car t-out) extended-top) (/ width 2))
(+ extended-top span power power))
(rect ’'NM (- (car t-out) extended-top (/ width 2))
(- (+ extended-top (* (+ space width) track))
width)
(+ extended-right (* track (+ space width)))
(+ extended-top (* (+ space width) track)))
(rect ’NM (- (+ extended-right (* (+ space width) track))

@ hos S 3

-
X

width))
(- (car t-in) (/ width 2))
(+ extended-right (* (+ space width) track)) e
(+ extended-top (* (+ space width) track))) fw
(move (poly-cut) (- (+ extended-right ﬁ#
(* track (+ space width)))) fﬁ
width) e
(+ (car t-in) (/ width 2)))

(rect ’NP (- extended-right power 3 power 3 (/ width 2)) .

(- (car t-in) 1) "
(- (+ extended-right (* track (+ space width))) o
(/ width 2)) oy
(+ (car t=-in) 1))))) o
W
Jﬁ
o

164

aveate el el e b abatal . 5 auy unl Pad o8 cad Al Wal O.F vad €8
N R O T A R R R S KR ERN RN AN TOIRE TR INL ”, s, %y ¢¥a &% ¥ LY, 1/ #, a1 - AT V) \

3
X
!;
t
APPENDIX C
l‘c"i
i
SOURCE CODES FOR TEST CIRCUITS S
":.’
Y
A. MEMORY o
)
(program memory 2 !
(def 11 power) 2l
(def 1 ground) -
(def 2 phia) .
(def 3 phib) O
(def 4 phic) "
(def on signal input §) Sﬁ
(def reset signal input 6) 0
(def a port input (7 8)) Al
(def b register) !
(def c port output (9 10))
(proces proci 0)
off g&
(cond (on (go start)) ﬂ
(t (go off))) %
start
(cond (on (setq b a) o
v (setq ¢ b) wﬂ
(go start)) e
(t (setq b a) (go off))))) {:
)
)
B. TEST ‘:".
o
(program test 2 ‘k
(def 10 power) XX
(def 1 ground) |
(def 2 phia) T
(def 3 phib) N
(def 4 phic) =
(def on signal input 5)]
(def reset signal input 6) 3
(def a port input (7 8)) "
(def b register) "
(def ¢ port output (9 10)) r;
(process procl 0 y
run (setq b a) 9
(setq ¢ b) R(
(go run))) »
R)
o

C. MULTIP4 o
(program multip4 4 0
(def 1 ground) !
(def ain port input (2 3 4 5)) -
(def a0 register) .
(def al register))
(def a2 register) i
(def bin port input (6 7 8 9)) !
(def b0 register) ?ﬁ
(def bl register) -
(def b2 register) ™
(def res port output (10 11 12 13)) '3

(def r0 register) .
(def r1 register) :é
(def r2 register) o)
(def 14 phia) -
(def 15 phib) o
(def 16 phic) 04
(def reset signal input 17) :Q
(def 18 power) ﬁn
(always o
(cond ((bit O bin) (setq r0 (>> (bit 0 ain) ain))) b2
(t (setq r0 0))) 0

(cond ((bit 1 bo) (setq r1 (>> (bit 0 (+ r0 a0)) (+ r0 a0)))) /
(t (setq r1 (>> (bit 0 r0) r0)))) oy

(cond ((bit 2 bl) (setq r2 (>> (bit 0 (+ r1 al)) {(+ r1 a1)))) $§
(t (setq r2 (> (bit 0 r1) ri)))) T

(cond ((bit 3 b2) (setq res (>> (bit 0 (+ r2 a2)) ="
(+ r2 a2)))) 4
(t (setq res (>> (bit 0 r2) r2)))) . ol

(cond (reset (setq a0 0)

(setq b0 0) ’u
(setq a1l 0) ey
(setq b1 0) i

(setq a2 0) 5
(set gb2 0) f&

(t (setq a0 ain) L)

(setq b0 bin) N
(setq al a0) b

(setq bl b0) £
(setq a2 al) .
(setg b2 b1))))) i,

i
o
.

5
R
ni }
>

»
.]
o
166 s
o

A

»
S
~o)

. . ~ ¢ ~ R Y,) ; " 8
n® N I O S T T I 0 AL M S NN TP AYOR GRS SR

\)

. . g6 o Al ATat A et At A% 8%a s #ta 3'act’n 8%4.8'2.0% 872,40 N 2 0"
R R IR T U o e R, .0 ol a8 Vo0 ol tal Vet 2V Na¥ A “a Sp5 " ¥ gt WU Y

D. TAXI

(program taxi 8

(def 17 power)

(def 1 ground)

(def 2 phia)

(def 3 phib)

(def 4 phic)

(def timer register)
(def fare register)

>
s

a2

) 5
(def reset signal input 5) :
(def time-on signal input 6)]
(def hire signal input 7) LYy
(def mile-mark signal input 8) i
(def display port inplut (9 10 11 12 13 14 15 16)) #q
(def charge-time signal internal) R
(def maximum-time constant 100) L
(def base-fare constant 20) !w
(def cost-per-mile constant 50) ﬂ&
(def cost-per-time constant 10) “ﬁ
(process time-clock 0 N
off hﬁ
(cond (time-on (setq timer 0) (go on)) =
(t (go off))) -
on l':
(cond (time-on (cond ((= timer maximum-time) o
(setq timer 0) g
(signal charge-time) W
(t (setq timer (1+ timer)))) e
(go on)) x
(t (setq timer 0) (go off)))) e
. (process fare-clock 0 feh%
for-hire }
(cond (hire (setq fare base-fare) (go hired)) };
(t (go for-hire))) 1
hired ®
(par (cond ((not hire) (go for-hire))
((and charge-time mile-mark) ;Q
(setq fare (+ (+ fare cost-per-mile) &f
cost-per-time)) o
(go hired)) i
(charge-time L4
(setq fare (+ fare cost-per-time)))
(go hired)))
(mile-mark A
(setq fare (+ fare cost-per-mile)) o
(go hired)) ‘e o
(t (go hired))) _
(setq display fare)))) 4
D
o
3
Y
"
167 o
:
§e", b
=
o

N
o na: ‘ AV 2 A W AR L Wi L T W VWY .
R TN O SO RS G I G L I MM M S o IO N AR M LA T U Y T s> Dot SV LA RS TN W e 0 et 5

LIST OF REFERENCES

1. Weste, Neil H. E., and Eshraghian, Kamran., Principles of CMOS VLSI De-
sign, A Systems Perspective. Reading, MA: Addison-Wesley Publishing Co..
1985.

[SV]

. Siskind, J. M., Southard, J. R., and Crouch, K. W., Generating Custom High
Performance VLSI Designs From Succint Algorithmic Descriptions. Proceed-

ings, Conference on Advanced Research in VLSI, January 1982.

3. Carlson, D. J., Applications of a Silicon Compiler to VLSI Design of Digital
Pipelined Multipliers. M.S. Thesis, Naval Postgraduate School, Monterey, CA.
i June 1984.

4. Froede, A. O., Silicon Compiler Design of Combinational and Pipeline Adder
Integrated Circuits. M. S. Thesis, Naval Postgraduate School, Monterey, CA.
June 1985.

5. Larabee, R. C., VLSI Design With the MacPitts Silicon Compiler. M. S.
Thesis, Naval Postgraduate School, Monterey, CA, September 1985,

6. Malagon-Fajar, M. A., Silicon Compilation Using a LISP-Based Layout Lan-

guage. M. S., Thesis, Naval Postgraduate School, Monterey, CA, June 1986.

~]

Weist, E. L., A Flowcharting System and Compiler Interface for MacPitts.
M. S. Thesis, Naval Postgraduate School, Monterey, CA, June 1986.

8. Mullarky, A. J., CMOS cell Library for a Silicon Compiler. M. S. Thesis.
Naval Postgraduate School, Monterey, CA, March 1987.

AALALE MRRIN

-
<

168

. - W
—— . U . JRpp - o I A .. A
O G D A A T A R O S A e AT A AR AN A R AT AT E N LNt (L SONOLARORAN A AN

10.

11.

13.

14.

16.

17.

18.

W,

: , R
B A A Y e T

Malagon, E. G., Techology Upgrade of a Silicon Compiler. M. S. Thesis, Naval

postgraduate School, Monterey, CA, June 1987.

Baumstarck, J. E., SCMOS Silicon Compiler Organelle Design and Insertion.
M. S. Thesis, Naval Postgraduate School, Monterey, CA, December 1987.

Mead, C. A., and Conway, L. A., Introduction to VLSI Systems. Addison-
Wesley Publishing Co., Reading, MA, 1980.

Computer Science Division, EECS Department University of California ar
Berkeley, 1986 VLSI Tools; Still More Works by the Original Artists. Report
No. UCB/CSD 86/272, December 1985.

Kelly, M. F., Comparative Router Performance. Ph. D. Thesis, University of

California, Livermore, CA, 1977.

Lee, C.. An Algorithmic for Path Connections and Its Applications. IRE

Transactions on Electronic Computers (September 1961), pp. 346-365.

. Hashimoto, A., and Stevens, J., Wire Routing by Optimizing Channel As-

signment Within Large Apertures, Proceedings Design Automation Workshop

(1971), pp. 165-169.

Rivest, R. L., and Fiduccia, C. M., A “Greedy” Channel Router, 10th Desig-

nAutomation Conference (1982), pp. 418-424.

Deutsch, D. N., A “Dogleq” Channel Router, Proceedings 13th Design Au-

tomation Conference (1976), pp. 425- 433.

McGehee, R. K., A Practical Moat Router, 24th Design Automation Confer-

ence (1987), pp. 216-221.

169

> " "o .('{ wy o, ('f~f~ q‘\-‘
- - LI i K1)

8 Ji=t = s LA EAAAL Jbirss

' 8

o

P AR AR L E T R S T AL AL OIS @ Y22,

. > - ata Y
PR AT RIS SR e ¥ ™ o'y g P e 408 Yl Vad dat Vol LYY) Sal Satosag tod, at,’ () » 5 . o e, "

16. Harmon. J. E., Automated Design of a Microprogrammed Controller for a

Finite State Machine. M. S. Thesis. Naval Postgraduate School, Monrerey. !
\J

CA, Work in progress.

W

20. Wyatt, J. L. Jr., The Practical Engineer's No-nonsense Guide to On-Chip

x_a_
e

Signal Delay Calculations, VLSI Memo No. 87- 381, Massachusetts Institute

¥
7 7

of Technology, May 1987.

\v-.'q,"?‘\"\'

e R

.'P"‘ﬁo.-

. r"' “v ~. "- ';..

. .
L)

Al]

RES

Ay

v
v

SRR L
L,Vetets
A

W o
(]

.-.' LN 8

an

v o

R

170 -

AT

. - - - -4
u"‘- J‘\J‘\J' D)

A

. ST APy P P O PO g P T L L L P _-i”‘f"‘f.‘f .y P S '.-.:(- T4 Tt " '-'.;\"_;‘\.'".;-'
R N N TV, o S R e A 3 AR AR AN

""" [g
’ "’ O,

BIBLIOGRAPHY

1. Carré, Bernard, Graphs and Networks, Clarendon Press, Oxford, 1979.

o

Crouch, K. W., L5 User’'s Guide, Massachusetts Institute of Technology Lin-
coln Laboratories Project Report RVLSI-5, 7 March 1984.

3. Engineering Staff of American Micro-Systems, Inc., MOS Integrated Circuits.
Van Nostrand Reinhold Co., 1972.

4. Joobbani, Rostam., An Artificial Intelligence Approach to VLSI Routing.
Kluwer Academic Publishers, 1986.

5. Mukherjee, Amar, nMOS & CMOS VLSI Systems Drsign. Prentice-Hall, En-
glewood Cliffs, N.J., 1986.

6. Wilensky, Robert, LISPcraft, New York, NY: W. W. Norton & Co.. 1984.

171

Iff-'f

.
-

ol P Pa s g el RN g

¥,

&

'

o, S o
=

A

L

1 8

il g ol

T EALSAN T

AT X L LR

AN I AN A A TR I NN N AN N N e N LN T N L e e e N]
e, Lo B M W . 3 A A 8 S ~ A g B

o o e S

""" R A I D s e N N R S A R R LT U e i A N
(X k. had] A LY z .,

) ¥ gat
TP T T T T % R T S W TP e g TN W s gt pat o ga® gav g

N

Q!

o0

v s gat aar oo " * T4 g

INITIAL DISTRIBUTION LIST 4

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-614&

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Department Chairman, Code 62

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5000

Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. D. E. Kirk, Code 62KI

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5000

Dr. H. H. Loomis, Jr., Code 62LM

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5000

Dr. D. C. Yang, Code 62YA

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5000

Dr. M. Zyda, Code 52MZ
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5000

BN S A TR IR AR R ~ RN

No. C'opiws P
2
(
M
)
2 X
b
'
3
1
N
:
t
)
'
3
A
1
"
W
Wt
ot
. N
l’,
2 v
>
ht
N
2 1
Y
‘ .
Y
5
*
9
2 3
n
()
1]
L}
k)
L]
L)
.
NG N AR S A AN NN

NALA alhlale N o R tlaN N

- a BBl e N fav 4 ae gat e goc o hat e bl b e e
[IR RA A UN LN U MW MUY UNURERERN XY 4" e O KD by a0 iyt ot Bav it T $e gt 2" N = ¥ Ll &

M) No. Coples

:: 9. Mr. P. Blankenship 1

:: Massachusetts Institute of Technology

K Lincoln Laboratory

l ‘ P. O. Box 73

:. Lexington, MA 02173-0073 |
3 1
i, 10. Mr. J. O'Leary 1 ;
: Massachusetts Institute of Technology

3 Lincoln Laboratory)
K’ P. O. Box 73 ‘:
N Lexington, MA 02173-0073
&

K

’ 11. Dr. T. Bestul 1

o Naval Research Laboratories X
X Code 7590 X
:': Washington, D.C. 20375 E
t

)

- 12. Mr. A. DeGroot 1

R Lawrence Livermore National Laboratory ‘
N P.O. Box 808
: Livermore, CA 94550]
£

13. Dr. A. Ross i

:" . Naval Research Laboratory, Code 9110

;:: 4555 Overlook Ave. SW \
Washington, D.C. 20375 f
L5 b
; 14. CDR David Southworth 1]
:; Office of Naval Technology, Code ONT227]
& 800 N. Quincy (BT #1) /
0 Arlington, VA 22217-5000 ‘
)

b 13. Mr. James Hall 1 :
e]:: Office of Naval Te:hnology, Code ONT20P4 ‘
W 800 N. Quincy (BT #1)

B Arlington, VA 22217-5000

‘;;; ‘ 16. LT. D. Carleton, USN 1 :
4 SMC #1493 :
X Naval Postgraduate School X
! Monterey, CA 93943 ‘
;' {
D) {
:!‘ 173 \
Y.')
*y

T S N R N A

